--- tags: [mods, monitoring, app] dataset: [CIFAR-10] framework: [wandb, tensorboard] --- # Using custom mods ๐Ÿงช [View on GitHub](https://github.com/adap/flower/blob/main/examples/custom-mods) > ๐Ÿงช = This example covers experimental features that might change in future versions of Flower > Please consult the regular PyTorch code examples ([quickstart](https://github.com/adap/flower/tree/main/examples/quickstart-pytorch), [advanced](https://github.com/adap/flower/tree/main/examples/advanced-pytorch)) to learn how to use Flower with PyTorch. The following steps describe how to write custom Flower Mods and use them in a simple example. ## Writing custom Flower Mods ### Flower Mods basics As described [here](https://flower.ai/docs/framework/how-to-use-built-in-mods.html#what-are-mods), Flower Mods in their simplest form can be described as: ```python def basic_mod(msg: Message, context: Context, app: ClientApp) -> Message: # Do something with incoming Message (or Context) # before passing to the inner ``ClientApp`` reply = app(msg, context) # Do something with outgoing Message (or Context) # before returning return reply ``` and used when defining the `ClientApp`: ```python app = fl.client.ClientApp( client_fn=client_fn, mods=[basic_mod], ) ``` Note that in this specific case, this mod won't modify anything, and perform FL as usual. ### WandB Flower Mod If we want to write a mod to monitor our client-side training using [Weights & Biases](https://github.com/wandb/wandb), we can follow the steps below. First, we need to initialize our W&B project with the correct parameters: ```python wandb.init( project=..., group=..., name=..., id=..., resume="allow", reinit=True, ) ``` In our case, the group should be the `run_id`, specific to a `ServerApp` run, and the `name` should be the `node_id`. This will make it easy to navigate our W&B project, as for each run we will be able to see the computed results as a whole or for each individual client. The `id` needs to be unique, so it will be a combination of `run_id` and `node_id`. In the end we have: ```python def wandb_mod(msg: Message, context: Context, app: ClientAppCallable) -> Message: run_id = msg.metadata.run_id group_name = f"Run ID: {run_id}" node_id = str(msg.metadata.dst_node_id) run_name = f"Node ID: {node_id}" wandb.init( project="Mod Name", group=group_name, name=run_name, id=f"{run_id}_{node_id}", resume="allow", reinit=True, ) ``` Now, before the message is processed by the server, we will store the starting time and the round number, in order to compute the time it took the client to perform its fit step. ```python server_round = int(msg.metadata.group_id) start_time = time.time() ``` And then, we can send the message to the client: ```python reply = app(msg, context) ``` And now, with the message we got back, we can gather our metrics: ```python if reply.metadata.message_type == MessageType.TRAIN and reply.has_content(): time_diff = time.time() - start_time metrics = reply.content.config_records results_to_log = dict(metrics.get("fitres.metrics", ConfigRecord())) results_to_log["fit_time"] = time_diff ``` Note that we store our metrics in the `results_to_log` variable and that we only initialize this variable when our client is sending back fit results (with content in it). Finally, we can send our results to W&B using: ```python wandb.log(results_to_log, step=int(server_round), commit=True) ``` The complete mod becomes: ```python def wandb_mod(msg: Message, context: Context, app: ClientAppCallable) -> Message: server_round = int(msg.metadata.group_id) if reply.metadata.message_type == MessageType.TRAIN and server_round == 1: run_id = msg.metadata.run_id group_name = f"Run ID: {run_id}" node_id = str(msg.metadata.dst_node_id) run_name = f"Node ID: {node_id}" wandb.init( project="Mod Name", group=group_name, name=run_name, id=f"{run_id}_{node_id}", resume="allow", reinit=True, ) start_time = time.time() reply = app(msg, context) if reply.metadata.message_type == MessageType.TRAIN and reply.has_content(): time_diff = time.time() - start_time metrics = reply.content.config_records results_to_log = dict(metrics.get("fitres.metrics", ConfigRecord())) results_to_log["fit_time"] = time_diff wandb.log(results_to_log, step=int(server_round), commit=True) return reply ``` And it can be used like: ```python app = fl.client.ClientApp( client_fn=client_fn, mods=[wandb_mod], ) ``` If we want to pass an argument to our mod, we can use a wrapper function: ```python def get_wandb_mod(name: str) -> Mod: def wandb_mod(msg: Message, context: Context, app: ClientAppCallable) -> Message: server_round = int(msg.metadata.group_id) run_id = msg.metadata.run_id group_name = f"Run ID: {run_id}" node_id = str(msg.metadata.dst_node_id) run_name = f"Node ID: {node_id}" wandb.init( project=name, group=group_name, name=run_name, id=f"{run_id}_{node_id}", resume="allow", reinit=True, ) start_time = time.time() reply = app(msg, context) if reply.metadata.message_type == MessageType.TRAIN and reply.has_content(): time_diff = time.time() - start_time metrics = reply.content.config_records results_to_log = dict(metrics.get("fitres.metrics", ConfigRecord())) results_to_log["fit_time"] = time_diff wandb.log(results_to_log, step=int(server_round), commit=True) return reply return wandb_mod ``` And use it like: ```python app = fl.client.ClientApp( client_fn=client_fn, mods=[ get_wandb_mod("Custom mods example"), ], ) ``` ### TensorBoard Flower Mod The [TensorBoard](https://www.tensorflow.org/tensorboard) Mod will only differ in the initialization and how the data is sent to TensorBoard: ```python def get_tensorboard_mod(logdir) -> Mod: os.makedirs(logdir, exist_ok=True) def tensorboard_mod( msg: Message, context: Context, app: ClientAppCallable ) -> Message: logdir_run = os.path.join(logdir, str(msg.metadata.run_id)) node_id = str(msg.metadata.dst_node_id) server_round = int(msg.metadata.group_id) start_time = time.time() reply = app(msg, context) time_diff = time.time() - start_time if reply.metadata.message_type == MessageType.TRAIN and reply.has_content(): writer = tf.summary.create_file_writer(os.path.join(logdir_run, node_id)) metrics = dict( reply.content.config_records.get("fitres.metrics", ConfigRecord()) ) with writer.as_default(step=server_round): tf.summary.scalar(f"fit_time", time_diff, step=server_round) for metric in metrics: tf.summary.scalar( f"{metric}", metrics[metric], step=server_round, ) writer.flush() return reply return tensorboard_mod ``` For the initialization, TensorBoard uses a custom directory path, which can, in this case, be passed as an argument to the wrapper function. It can be used in the following way: ```python app = fl.client.ClientApp( client_fn=client_fn, mods=[get_tensorboard_mod(".runs_history/")], ) ``` ## Running the example ### Preconditions Let's assume the following project structure: ```bash $ tree . . โ”œโ”€โ”€ client.py # <-- contains `ClientApp` โ”œโ”€โ”€ server.py # <-- contains `ServerApp` โ”œโ”€โ”€ task.py # <-- task-specific code (model, data) โ””โ”€โ”€ requirements.txt # <-- dependencies ``` ### Install dependencies ```bash pip install -r requirements.txt ``` For [W&B](https://wandb.ai) you will also need a valid account. ### Start the long-running Flower server (SuperLink) ```bash flower-superlink --insecure ``` ### Start the long-running Flower client (SuperNode) In a new terminal window, start the first long-running Flower client using: ```bash flower-client-app client:wandb_app --insecure ``` for W&B monitoring, or: ```bash flower-client-app client:tb_app --insecure ``` for TensorBoard. In yet another new terminal window, start the second long-running Flower client (with the mod of your choice): ```bash flower-client-app client:{wandb,tb}_app --insecure ``` ### Run the Flower App With both the long-running server (SuperLink) and two clients (SuperNode) up and running, we can now run the actual Flower App: ```bash flower-server-app server:app --insecure ``` ### Check the results For W&B, you will need to login to the [website](https://wandb.ai). For TensorBoard, you will need to run the following command in your terminal: ```sh tensorboard --logdir ``` Where `` needs to be replaced by the directory passed as an argument to the wrapper function (`.runs_history/` by default).