.. _quickstart-scikitlearn: Quickstart scikit-learn ======================= In this federated learning tutorial we will learn how to train a Logistic Regression on MNIST using Flower and scikit-learn. It is recommended to create a virtual environment and run everything within a :doc:`virtualenv `. Let's use ``flwr new`` to create a complete Flower+scikit-learn project. It will generate all the files needed to run, by default with the Flower Simulation Engine, a federation of 10 nodes using |fedavg|_ The dataset will be partitioned using |flowerdatasets|_'s |iidpartitioner|_ Now that we have a rough idea of what this example is about, let's get started. First, install Flower in your new environment: .. code-block:: shell # In a new Python environment $ pip install flwr Then, run the command below. You will be prompted to select one of the available templates (choose ``sklearn``), give a name to your project, and type in your developer name: .. code-block:: shell $ flwr new After running it you'll notice a new directory with your project name has been created. It should have the following structure: .. code-block:: shell ├── │ ├── __init__.py │ ├── client_app.py # Defines your ClientApp │ ├── server_app.py # Defines your ServerApp │ └── task.py # Defines your model, training and data loading ├── pyproject.toml # Project metadata like dependencies and configs └── README.md If you haven't yet installed the project and its dependencies, you can do so by: .. code-block:: shell # From the directory where your pyproject.toml is $ pip install -e . To run the project, do: .. code-block:: shell # Run with default arguments $ flwr run . With default arguments you will see an output like this one: .. code-block:: shell Loading project configuration... Success INFO : Starting Flower ServerApp, config: num_rounds=3, no round_timeout INFO : INFO : [INIT] INFO : Requesting initial parameters from one random client INFO : Received initial parameters from one random client INFO : Starting evaluation of initial global parameters INFO : Evaluation returned no results (`None`) INFO : INFO : [ROUND 1] INFO : configure_fit: strategy sampled 10 clients (out of 10) INFO : aggregate_fit: received 10 results and 0 failures WARNING : No fit_metrics_aggregation_fn provided INFO : configure_evaluate: strategy sampled 10 clients (out of 10) INFO : aggregate_evaluate: received 10 results and 0 failures WARNING : No evaluate_metrics_aggregation_fn provided INFO : INFO : [ROUND 2] INFO : configure_fit: strategy sampled 10 clients (out of 10) INFO : aggregate_fit: received 10 results and 0 failures INFO : configure_evaluate: strategy sampled 10 clients (out of 10) INFO : aggregate_evaluate: received 10 results and 0 failures INFO : INFO : [ROUND 3] INFO : configure_fit: strategy sampled 10 clients (out of 10) INFO : aggregate_fit: received 10 results and 0 failures INFO : configure_evaluate: strategy sampled 10 clients (out of 10) INFO : aggregate_evaluate: received 10 results and 0 failures INFO : INFO : [SUMMARY] INFO : Run finished 3 round(s) in 19.41s INFO : History (loss, distributed): INFO : round 1: 1.3447584261018466 INFO : round 2: 0.9680018613482815 INFO : round 3: 0.7667920399137523 INFO : You can also override the parameters defined in the ``[tool.flwr.app.config]`` section in ``pyproject.toml`` like this: .. code-block:: shell # Override some arguments $ flwr run . --run-config "num-server-rounds=5 local-epochs=2" What follows is an explanation of each component in the project you just created: dataset partition, the model, defining the ``ClientApp`` and defining the ``ServerApp``. The Data -------- This tutorial uses |flowerdatasets|_ to easily download and partition the `MNIST `_ dataset. In this example you'll make use of the |iidpartitioner|_ to generate ``num_partitions`` partitions. You can choose |otherpartitioners|_ available in Flower Datasets. Each ``ClientApp`` will call this function to create dataloaders with the data that correspond to their data partition. .. code-block:: python partitioner = IidPartitioner(num_partitions=num_partitions) fds = FederatedDataset( dataset="mnist", partitioners={"train": partitioner}, ) dataset = fds.load_partition(partition_id, "train").with_format("numpy") X, y = dataset["image"].reshape((len(dataset), -1)), dataset["label"] # Split the on edge data: 80% train, 20% test X_train, X_test = X[: int(0.8 * len(X))], X[int(0.8 * len(X)) :] y_train, y_test = y[: int(0.8 * len(y))], y[int(0.8 * len(y)) :] The Model --------- We define the |logisticregression|_ model from scikit-learn in the ``get_model()`` function: .. code-block:: python def get_model(penalty: str, local_epochs: int): return LogisticRegression( penalty=penalty, max_iter=local_epochs, warm_start=True, ) To perform the training and evaluation, we will make use of the ``.fit()`` and ``.score()`` methods available in the ``LogisticRegression`` class. The ClientApp ------------- The main changes we have to make to use scikit-learn with Flower will be found in the ``get_model_params()``, ``set_model_params()``, and ``set_initial_params()`` functions. In ``get_model_params()``, the coefficients and intercept of the logistic regression model are extracted and represented as a list of NumPy arrays. In ``set_model_params()``, that's the opposite: given a list of NumPy arrays it applies them to an existing ``LogisticRegression`` model. Finally, in ``set_initial_params()``, we initialize the model parameters based on the MNIST dataset, which has 10 classes (corresponding to the 10 digits) and 784 features (corresponding to the size of the MNIST image array, which is 28 × 28). Doing this is fairly easy in scikit-learn. .. code-block:: python def get_model_params(model): if model.fit_intercept: params = [ model.coef_, model.intercept_, ] else: params = [model.coef_] return params def set_model_params(model, params): model.coef_ = params[0] if model.fit_intercept: model.intercept_ = params[1] return model def set_initial_params(model): n_classes = 10 # MNIST has 10 classes n_features = 784 # Number of features in dataset model.classes_ = np.array([i for i in range(10)]) model.coef_ = np.zeros((n_classes, n_features)) if model.fit_intercept: model.intercept_ = np.zeros((n_classes,)) The rest of the functionality is directly inspired by the centralized case: .. code-block:: python class FlowerClient(NumPyClient): def __init__(self, model, X_train, X_test, y_train, y_test): self.model = model self.X_train = X_train self.X_test = X_test self.y_train = y_train self.y_test = y_test def fit(self, parameters, config): set_model_params(self.model, parameters) # Ignore convergence failure due to low local epochs with warnings.catch_warnings(): warnings.simplefilter("ignore") self.model.fit(self.X_train, self.y_train) return get_model_params(self.model), len(self.X_train), {} def evaluate(self, parameters, config): set_model_params(self.model, parameters) loss = log_loss(self.y_test, self.model.predict_proba(self.X_test)) accuracy = self.model.score(self.X_test, self.y_test) return loss, len(self.X_test), {"accuracy": accuracy} Finally, we can construct a ``ClientApp`` using the ``FlowerClient`` defined above by means of a ``client_fn()`` callback. Note that the ``context`` enables you to get access to hyperparemeters defined in your ``pyproject.toml`` to configure the run. In this tutorial we access the `local-epochs` setting to control the number of epochs a ``ClientApp`` will perform when running the ``fit()`` method. You could define additioinal hyperparameters in ``pyproject.toml`` and access them here. .. code-block:: python def client_fn(context: Context): # Load data and model partition_id = context.node_config["partition-id"] num_partitions = context.node_config["num-partitions"] X_train, X_test, y_train, y_test = load_data(partition_id, num_partitions) penalty = context.run_config["penalty"] local_epochs = context.run_config["local-epochs"] model = get_model(penalty, local_epochs) # Setting initial parameters, akin to model.compile for keras models set_initial_params(model) # Return Client instance return FlowerClient(model, X_train, X_test, y_train, y_test).to_client() # Flower ClientApp app = ClientApp(client_fn) The ServerApp ------------- To construct a ``ServerApp`` we define a ``server_fn()`` callback with an identical signature to that of ``client_fn()`` but the return type is |serverappcomponents|_ as opposed to a |client|_ In this example we use the `FedAvg` strategy. To it we pass a zero-initialized model that will server as the global model to be federated. Note that the values of ``num-server-rounds``, ``penalty``, and ``local-epochs`` are read from the run config. You can find the default values defined in the ``pyproject.toml``. .. code-block:: python def server_fn(context: Context): # Read from config num_rounds = context.run_config["num-server-rounds"] # Create LogisticRegression Model penalty = context.run_config["penalty"] local_epochs = context.run_config["local-epochs"] model = get_model(penalty, local_epochs) # Setting initial parameters, akin to model.compile for keras models set_initial_params(model) initial_parameters = ndarrays_to_parameters(get_model_params(model)) # Define strategy strategy = FedAvg( fraction_fit=1.0, fraction_evaluate=1.0, min_available_clients=2, initial_parameters=initial_parameters, ) config = ServerConfig(num_rounds=num_rounds) return ServerAppComponents(strategy=strategy, config=config) # Create ServerApp app = ServerApp(server_fn=server_fn) Congratulations! You've successfully built and run your first federated learning system in scikit-learn. .. note:: Check the source code of the extended version of this tutorial in |quickstart_sklearn_link|_ in the Flower GitHub repository. .. |client| replace:: ``Client`` .. |fedavg| replace:: ``FedAvg`` .. |flowerdatasets| replace:: Flower Datasets .. |iidpartitioner| replace:: ``IidPartitioner`` .. |logisticregression| replace:: ``LogisticRegression`` .. |otherpartitioners| replace:: other partitioners .. |serverappcomponents| replace:: ``ServerAppComponents`` .. |quickstart_sklearn_link| replace:: ``examples/sklearn-logreg-mnist`` .. _client: ref-api/flwr.client.Client.html#client .. _fedavg: ref-api/flwr.server.strategy.FedAvg.html#flwr.server.strategy.FedAvg .. _flowerdatasets: https://flower.ai/docs/datasets/ .. _iidpartitioner: https://flower.ai/docs/datasets/ref-api/flwr_datasets.partitioner.IidPartitioner.html#flwr_datasets.partitioner.IidPartitioner .. _logisticregression: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html .. _otherpartitioners: https://flower.ai/docs/datasets/ref-api/flwr_datasets.partitioner.html .. _quickstart_sklearn_link: https://github.com/adap/flower/tree/main/examples/sklearn-logreg-mnist .. _serverappcomponents: ref-api/flwr.server.ServerAppComponents.html#serverappcomponents .. meta:: :description: Check out this Federated Learning quickstart tutorial for using Flower with scikit-learn to train a linear regression model.