:og:description: Learn how to train a SqueezeNet model on MNIST using federated learning with Flower and fastai in this step-by-step tutorial. .. meta:: :description: Learn how to train a SqueezeNet model on MNIST using federated learning with Flower and fastai in this step-by-step tutorial. .. _quickstart-fastai: Quickstart fastai ================= In this federated learning tutorial we will learn how to train a SqueezeNet model on MNIST using Flower and fastai. It is recommended to create a virtual environment and run everything within a :doc:`virtualenv `. Then, clone the code example directly from GitHub: .. code-block:: shell git clone --depth=1 https://github.com/adap/flower.git _tmp \ && mv _tmp/examples/quickstart-fastai . \ && rm -rf _tmp && cd quickstart-fastai This will create a new directory called `quickstart-fastai` containing the following files: .. code-block:: shell quickstart-fastai ├── fastai_example │ ├── client_app.py # Defines your ClientApp │ ├── server_app.py # Defines your ServerApp │ └── task.py # Defines your model, training and data loading ├── pyproject.toml # Project metadata like dependencies and configs └── README.md Next, activate your environment, then run: .. code-block:: shell # Navigate to the example directory $ cd path/to/quickstart-fastai # Install project and dependencies $ pip install -e . This example by default runs the Flower Simulation Engine, creating a federation of 10 nodes using `FedAvg `_ as the aggregation strategy. The dataset will be partitioned using Flower Dataset's `IidPartitioner `_. Let's run the project: .. code-block:: shell # Run with default arguments $ flwr run . With default arguments you will see an output like this one: .. code-block:: shell Loading project configuration... Success INFO : Starting FedAvg strategy: INFO : ├── Number of rounds: 3 INFO : ├── ArrayRecord (4.72 MB) INFO : ├── ConfigRecord (train): (empty!) INFO : ├── ConfigRecord (evaluate): (empty!) INFO : ├──> Sampling: INFO : │ ├──Fraction: train (0.50) | evaluate ( 1.00) INFO : │ ├──Minimum nodes: train (2) | evaluate (2) INFO : │ └──Minimum available nodes: 2 INFO : └──> Keys in records: INFO : ├── Weighted by: 'num-examples' INFO : ├── ArrayRecord key: 'arrays' INFO : └── ConfigRecord key: 'config' INFO : INFO : INFO : [ROUND 1/3] INFO : configure_train: Sampled 5 nodes (out of 10) INFO : aggregate_train: Received 5 results and 0 failures INFO : └──> Aggregated MetricRecord: {} INFO : configure_evaluate: Sampled 10 nodes (out of 10) INFO : aggregate_evaluate: Received 10 results and 0 failures INFO : └──> Aggregated MetricRecord: {'eval_loss': 3.1197, 'eval_acc': 0.14874} INFO : INFO : [ROUND 2/3] INFO : configure_train: Sampled 5 nodes (out of 10) INFO : aggregate_train: Received 5 results and 0 failures INFO : └──> Aggregated MetricRecord: {} INFO : configure_evaluate: Sampled 10 nodes (out of 10) INFO : aggregate_evaluate: Received 10 results and 0 failures INFO : └──> Aggregated MetricRecord: {'eval_loss': 0.8071, 'eval_acc': 0.7488} INFO : INFO : [ROUND 3/3] INFO : configure_train: Sampled 5 nodes (out of 10) INFO : aggregate_train: Received 5 results and 0 failures INFO : └──> Aggregated MetricRecord: {} INFO : configure_evaluate: Sampled 10 nodes (out of 10) INFO : aggregate_evaluate: Received 10 results and 0 failures INFO : └──> Aggregated MetricRecord: {'eval_loss': 0.5015, 'eval_acc': 0.8547} INFO : INFO : Strategy execution finished in 72.84s INFO : INFO : Final results: INFO : INFO : Global Arrays: INFO : ArrayRecord (4.719 MB) INFO : INFO : Aggregated ClientApp-side Train Metrics: INFO : {1: {}, 2: {}, 3: {}} INFO : INFO : Aggregated ClientApp-side Evaluate Metrics: INFO : { 1: {'eval_acc': '1.4875e-01', 'eval_loss': '3.1197e+00'}, INFO : 2: {'eval_acc': '7.4883e-01', 'eval_loss': '8.0705e-01'}, INFO : 3: {'eval_acc': '8.5467e-01', 'eval_loss': '5.0145e-01'}} INFO : INFO : ServerApp-side Evaluate Metrics: INFO : {} INFO : Saving final model to disk... You can also override the parameters defined in the ``[tool.flwr.app.config]`` section in ``pyproject.toml`` like this: .. code-block:: shell # Override some arguments $ flwr run . --run-config num-server-rounds=5 .. note:: Check the `source code `_ of this tutorial in ``examples/quickstart-fastai`` in the Flower GitHub repository.