Source code for flwr_datasets.metrics.utils

# Copyright 2024 Flower Labs GmbH. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utils for metrics computation."""


import warnings
from typing import Optional, Union

import pandas as pd

from flwr_datasets.partitioner import Partitioner


[docs] def compute_counts( partitioner: Partitioner, column_name: str, verbose_names: bool = False, max_num_partitions: Optional[int] = None, ) -> pd.DataFrame: """Compute the counts of unique values in a given column in the partitions. Take into account all possible labels in dataset when computing count for each partition (assign 0 as the size when there are no values for a label in the partition). Parameters ---------- partitioner : Partitioner Partitioner with an assigned dataset. column_name : str Column name identifying label based on which the count will be calculated. verbose_names : bool Whether to use verbose versions of the values in the column specified by `column_name`. The verbose values are possible to extract if the column is a feature of type `ClassLabel`. max_num_partitions : Optional[int] The maximum number of partitions that will be used. If greater than the total number of partitions in a partitioner, it won't have an effect. If left as None, then all partitions will be used. Returns ------- dataframe: pd.DataFrame DataFrame where the row index represent the partition id and the column index represent the unique values found in column specified by `column_name` (e.g. represeting the labels). The value of the dataframe.loc[i, j] represents the count of the label j, in the partition of index i. Examples -------- Generate DataFrame with label counts resulting from DirichletPartitioner on cifar10 >>> from flwr_datasets import FederatedDataset >>> from flwr_datasets.partitioner import DirichletPartitioner >>> from flwr_datasets.metrics import compute_counts >>> >>> fds = FederatedDataset( >>> dataset="cifar10", >>> partitioners={ >>> "train": DirichletPartitioner( >>> num_partitions=20, >>> partition_by="label", >>> alpha=0.3, >>> min_partition_size=0, >>> ), >>> }, >>> ) >>> partitioner = fds.partitioners["train"] >>> counts_dataframe = compute_counts( >>> partitioner=partitioner, >>> column_name="label" >>> ) """ if column_name not in partitioner.dataset.column_names: raise ValueError( f"The specified 'column_name': '{column_name}' is not present in the " f"dataset. The dataset contains columns {partitioner.dataset.column_names}." ) if max_num_partitions is None: max_num_partitions = partitioner.num_partitions else: max_num_partitions = min(max_num_partitions, partitioner.num_partitions) assert isinstance(max_num_partitions, int) partition = partitioner.load_partition(0) try: # Unique labels are needed to represent the correct count of each class # (some of the classes can have zero samples that's why this # adjustment is needed) unique_labels = partition.features[column_name].str2int( partition.features[column_name].names ) except AttributeError: # If the column_name is not formally a Label unique_labels = partitioner.dataset.unique(column_name) partition_id_to_label_absolute_size = {} for partition_id in range(max_num_partitions): partition = partitioner.load_partition(partition_id) partition_id_to_label_absolute_size[partition_id] = _compute_counts( partition[column_name], unique_labels ) dataframe = pd.DataFrame.from_dict( partition_id_to_label_absolute_size, orient="index" ) dataframe.index.name = "Partition ID" if verbose_names: # Adjust the column name values of the dataframe current_labels = dataframe.columns try: legend_names = partitioner.dataset.features[column_name].int2str( [int(v) for v in current_labels] ) dataframe.columns = legend_names except AttributeError: warnings.warn( "The verbose names can not be established. " "The column specified by 'column_name' needs to be of type " "'ClassLabel' to create a verbose names. " "The available names will used.", stacklevel=1, ) return dataframe
[docs] def compute_frequencies( partitioner: Partitioner, column_name: str, verbose_names: bool = False, max_num_partitions: Optional[int] = None, ) -> pd.DataFrame: """Compute the frequencies of unique values in a given column in the partitions. The frequencies sum up to 1 for a given partition id. This function takes into account all possible labels in the dataset when computing the count for each partition (assign 0 as the size when there are no values for a label in the partition). Parameters ---------- partitioner : Partitioner Partitioner with an assigned dataset. column_name : str Column name identifying label based on which the count will be calculated. verbose_names : bool Whether to use verbose versions of the values in the column specified by `column_name`. The verbose value are possible to extract if the column is a feature of type `ClassLabel`. max_num_partitions : Optional[int] The maximum number of partitions that will be used. If greater than the total number of partitions in a partitioner, it won't have an effect. If left as None, then all partitions will be used. Returns ------- dataframe: pd.DataFrame DataFrame where the row index represent the partition id and the column index represent the unique values found in column specified by `column_name` (e.g. represeting the labels). The value of the dataframe.loc[i, j] represnt the ratio of the label j to the total number of sample of in partition i. Examples -------- Generate DataFrame with label counts resulting from DirichletPartitioner on cifar10 >>> from flwr_datasets import FederatedDataset >>> from flwr_datasets.partitioner import DirichletPartitioner >>> from flwr_datasets.metrics import compute_frequencies >>> >>> fds = FederatedDataset( >>> dataset="cifar10", >>> partitioners={ >>> "train": DirichletPartitioner( >>> num_partitions=20, >>> partition_by="label", >>> alpha=0.3, >>> min_partition_size=0, >>> ), >>> }, >>> ) >>> partitioner = fds.partitioners["train"] >>> counts_dataframe = compute_frequencies( >>> partitioner=partitioner, >>> column_name="label" >>> ) """ dataframe = compute_counts( partitioner, column_name, verbose_names, max_num_partitions ) dataframe = dataframe.div(dataframe.sum(axis=1), axis=0) return dataframe
def _compute_counts( labels: Union[list[int], list[str]], unique_labels: Union[list[int], list[str]] ) -> pd.Series: """Compute the count of labels when taking into account all possible labels. Also known as absolute frequency. Parameters ---------- labels: Union[List[int], List[str]] The labels from the datasets. unique_labels: Union[List[int], List[str]] The reference all unique label. Needed to avoid missing any label, instead having the value equal to zero for them. Returns ------- label_counts: pd.Series The pd.Series with label as indices and counts as values. """ if len(unique_labels) != len(set(unique_labels)): raise ValueError("unique_labels must contain unique elements only.") labels_series = pd.Series(labels) label_counts = labels_series.value_counts() label_counts_with_zeros = pd.Series(index=unique_labels, data=0) label_counts_with_zeros = label_counts_with_zeros.add( label_counts, fill_value=0 ).astype(int) return label_counts_with_zeros def _compute_frequencies( labels: Union[list[int], list[str]], unique_labels: Union[list[int], list[str]] ) -> pd.Series: """Compute the distribution of labels when taking into account all possible labels. Also known as relative frequency. Parameters ---------- labels: Union[List[int], List[str]] The labels from the datasets. unique_labels: Union[List[int], List[str]] The reference all unique label. Needed to avoid missing any label, instead having the value equal to zero for them. Returns ------- The pd.Series with label as indices and probabilities as values. """ counts = _compute_counts(labels, unique_labels) if len(labels) == 0: frequencies = counts.astype(float) return frequencies frequencies = counts.divide(len(labels)) return frequencies