Source code for flwr_datasets.partitioner.natural_id_partitioner

# Copyright 2023 Flower Labs GmbH. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Natural id partitioner class that works with Hugging Face Datasets."""


import numpy as np
from tqdm import tqdm

import datasets
from flwr_datasets.common.typing import NDArrayInt
from flwr_datasets.partitioner.partitioner import Partitioner


[docs] class NaturalIdPartitioner(Partitioner): """Partitioner for a dataset that can be divided by a column with partition ids. Parameters ---------- partition_by: str The name of the column that contains the unique values of partitions. Examples -------- "flwrlabs/shakespeare" dataset >>> from flwr_datasets import FederatedDataset >>> from flwr_datasets.partitioner import NaturalIdPartitioner >>> >>> partitioner = NaturalIdPartitioner(partition_by="character_id") >>> fds = FederatedDataset(dataset="flwrlabs/shakespeare", >>> partitioners={"train": partitioner}) >>> partition = fds.load_partition(0) "sentiment140" (aka Twitter) dataset >>> from flwr_datasets import FederatedDataset >>> from flwr_datasets.partitioner import NaturalIdPartitioner >>> >>> partitioner = NaturalIdPartitioner(partition_by="user") >>> fds = FederatedDataset(dataset="sentiment140", >>> partitioners={"train": partitioner}) >>> partition = fds.load_partition(0) """ def __init__( self, partition_by: str, ): super().__init__() self._partition_id_to_natural_id: dict[int, str] = {} self._natural_id_to_partition_id: dict[str, int] = {} self._partition_id_to_indices: dict[int, NDArrayInt] = {} self._partition_by = partition_by def _create_int_partition_id_to_natural_id(self) -> None: """Create a mapping from int indices to unique client ids from dataset. Natural ids come from the column specified in `partition_by`. """ unique_natural_ids = self.dataset.unique(self._partition_by) self._partition_id_to_natural_id = dict( zip(range(len(unique_natural_ids)), unique_natural_ids) ) def _create_natural_id_to_int_partition_id(self) -> None: """Create a mapping from unique client ids from dataset to int indices. Natural ids come from the column specified in `partition_by`. This object is inverse of the `self._partition_id_to_natural_id`. This method assumes that `self._partition_id_to_natural_id` already exist. """ self._natural_id_to_partition_id = { value: key for key, value in self._partition_id_to_natural_id.items() } def _create_partition_id_to_indices(self) -> None: natural_id_to_indices = {} # type: ignore natural_ids = np.array(self.dataset[self._partition_by]) for index, natural_id in tqdm( enumerate(natural_ids), desc="Generating partition_id_to_indices" ): if natural_id not in natural_id_to_indices: natural_id_to_indices[natural_id] = [] natural_id_to_indices[natural_id].append(index) self._partition_id_to_indices = { self._natural_id_to_partition_id[natural_id]: indices for natural_id, indices in natural_id_to_indices.items() }
[docs] def load_partition(self, partition_id: int) -> datasets.Dataset: """Load a single partition corresponding to a single `partition_id`. The choice of the partition is based on unique integers assigned to each natural id present in the dataset in the `partition_by` column. Parameters ---------- partition_id : int the index that corresponds to the requested partition Returns ------- dataset_partition : Dataset single dataset partition """ if len(self._partition_id_to_natural_id) == 0: self._create_int_partition_id_to_natural_id() self._create_natural_id_to_int_partition_id() if len(self._partition_id_to_indices) == 0: self._create_partition_id_to_indices() return self.dataset.select(self._partition_id_to_indices[partition_id])
@property def num_partitions(self) -> int: """Total number of partitions.""" if len(self._partition_id_to_natural_id) == 0: self._create_int_partition_id_to_natural_id() self._create_natural_id_to_int_partition_id() return len(self._partition_id_to_natural_id) @property def partition_id_to_natural_id(self) -> dict[int, str]: """Node id to corresponding natural id present. Natural ids are the unique values in `partition_by` column in dataset. """ return self._partition_id_to_natural_id @partition_id_to_natural_id.setter def partition_id_to_natural_id(self, value: dict[int, str]) -> None: raise AttributeError( "Setting the partition_id_to_natural_id dictionary is not allowed." )