Deploy SuperLink using Helm¶
Note
Flower Helm charts are a Flower Enterprise feature. See Flower Enterprise for details.
The Flower Framework offers a unified approach to federated learning, analytics, and evaluation, allowing you to federate any workload, machine learning framework, or programming language.
This Helm chart installs the server-side components of the Flower Framework, specifically setting up the SuperLink.
The default installation configuration aims to replicate the functionality and setup of the provided Flower Framework releases.
Disable the SuperLink component¶
superlink:
name: superlink
enabled: false
Enable the ServerApp component¶
serverapp:
name: serverapp
enabled: true
Run simulations in Kubernetes using the Simulation Plugin¶
For more details, visit: Run simulations guide
superlink:
enabled: true
executor:
plugin: flwr.superexec.simulation:executor
config:
num-supernodes: 2
[...]
Change Log Verbosity Level¶
The log verbosity level in Flower can be adjusted using the FLWR_LOG_LEVEL
environment variable. This helps control the level of detail included in logs, making
debugging and monitoring easier.
Setting Global Log Level
To enable detailed logging (e.g., DEBUG
level) for all services, add
FLWR_LOG_LEVEL
to the env
parameter under the global
section in your
values.yml
file:
global:
env:
- name: FLWR_LOG_LEVEL
value: DEBUG
Setting Log Level for a Specific Service
If you want to enable logging only for a specific service (e.g., superlink
), you can
specify it under the respective service section:
superlink:
env:
- name: FLWR_LOG_LEVEL
value: DEBUG
For more details on logging configuration, visit: Flower Logging Documentation
Enable User Authentication¶
User authentication can be enabled if you’re using the Flower Enterprise Edition (EE)
Docker images. This is configured in the global.userAuth
section of your
values.yml
file.
Example: Enabling OpenID Connect (OIDC) Authentication
global:
userAuth:
enabled: true
config:
authentication:
auth_type: oidc
auth_url: https://<domain>/auth/device
token_url: https://<domain>/token
validate_url: https://<domain>/userinfo
oidc_client_id: <client_id>
oidc_client_secret: <client_secret>
Explanation of Parameters:
auth_type
: The authentication mechanism being used (e.g., OIDC).auth_url
: The OpenID Connect authentication endpoint where users authenticate.token_url
: The URL for retrieving access tokens.validate_url
: The endpoint for validating user authentication.oidc_client_id
: The client ID issued by the authentication provider.oidc_client_secret
: The secret key associated with the client ID.
Use an Existing Secret
To use an existing secret that contains the user authentication configuration, set
existingSecret
to the name of the existing secret:
global:
userAuth:
enabled: true
config: {}
existingSecret: "existing-user-auth-config"
Note that the existing secret must contain the key user-auth-config.yml
:
kind: Secret
stringData:
user-auth-config.yml: |
authentication:
auth_type: oidc
auth_url: https://<domain>/auth/device
token_url: https://<domain>/token
validate_url: https://<domain>/userinfo
oidc_client_id: <client_id>
oidc_client_secret: <client_secret>
Configuring OpenFGA
The chart component supports OpenFGA as a fine-grained authorization service, but it is disabled by default.
To enable OpenFGA change the following value in your values.yml
file:
openfga:
enabled: true
By default, OpenFGA will run with an in-memory store, which is non-persistent and suitable only for testing or development.
OpenFGA supports persistent storage using PostgreSQL or MySQL:
To deploy OpenFGA with a new PostgreSQL/MySQL instance, enable the bundled chart configuration.
To connect to an existing database, provide the appropriate connection details via Helm values (e.g.,
openfga.datastore.uri
).
For more information visit the official OpenFGA Helm Chart Documentation.
The following commands set up a store, authorization model, and inserts users (using tuples) into OpenFGA. Run these once the OpenFGA instance is deployed.
Setup the authorization model and tuples:
Authorization model file model.fga
model
# We are using the 1.1 schema with type restrictions
schema 1.1
# Define the 'flwr_aid' type to represent individual users in the system.
type flwr_aid
# Define the 'service' type to group users.
type service
relations
# The 'has_access' relation defines users who have access to this service.
define has_access: [flwr_aid]
User permissions file tuples.fga
- user: flwr_aid:<OIDC_SUB_1>
relation: has_access
object: service:<your_grid_name>
- user: flwr_aid:<OIDC_SUB_2>
relation: has_access
object: service:<your_grid_name>
Create store:
OPENFGA_URL="<OPENFGA_URL>"
OPENFGA_STORE_NAME="<OPENFGA_STORE_NAME>"
docker run --rm -v "$(pwd)":/app -w /app openfga/cli \
--api-url ${OPENFGA_URL} store create \
--name ${OPENFGA_STORE_NAME}
The response will include an id
field, which is the OpenFGA store ID associated with
the OPENFGA_STORE_NAME
that was created.
Get store ID (alternative way):
docker run --rm -v "$(pwd)":/app -w /app openfga/cli \
--api-url ${OPENFGA_URL} store list
Set OpenFGA store ID from previous step and write model:
OPENFGA_STORE_ID="<STORE_ID_FROM_EARLIER_STEP>"
docker run --rm -v "$(pwd)":/app -w /app openfga/cli \
--api-url ${OPENFGA_URL} model write \
--store-id ${OPENFGA_STORE_ID} \
--file model.fga
Set OpenFGA model ID from previous step and write tuples:
OPENFGA_MODEL_ID="<MODEL_ID_FROM_EARLIER_STEP>"
docker run --rm -v "$(pwd)":/app -w /app openfga/cli \
--api-url ${OPENFGA_URL} tuple write \
--store-id ${OPENFGA_STORE_ID} \
--model-id ${OPENFGA_MODEL_ID} \
--file tuples.yaml
Add a new authorization
section under your existing global.userAuth
configuration or directly within your existing secret, depending on your setup. Set the
OPENFGA_STORE_ID
and OPENFGA_MODEL_ID
from the previous steps in the file:
authorization:
authz_type: openfga
authz_url: <OPENFGA_URL>
store_id: <OPENFGA_STORE_ID>
model_id: <OPENFGA_MODEL_ID>
relation: has_access
object: service:<your_grid_name>
Change Isolation Mode¶
The isolation mode determines how the SuperLink manages the ServerApp process execution.
This setting can be adjusted using the superlink.isolationMode
parameter:
Example: Changing Isolation Mode
superlink:
isolationMode: process
# Don’t forget to enable the serverapp if you don’t
# plan to use an existing one.
serverapp:
enabled: true
Deploy Flower Framework with TLS¶
To ensure TLS communication within the Flower Framework, you need to configure your deployment with proper TLS certificates.
global:
insecure: false
superlink:
enabled: true
Override certificate paths¶
By default, the TLS-related flags use the following paths when TLS is enabled:
--ssl-ca-certfile
: /app/cert/ca.crt
, --ssl-certfile
: /app/cert/tls.crt
,
--ssl-keyfile
: /app/cert/tls.key
.
These paths can be overridden by specifying the flags in the extraArgs, as shown below.
global:
insecure: false
superlink:
enabled: true
extraArgs:
- --ssl-ca-certfile
- /mount/cert/ca.cert
- --ssl-certfile
- /mount/cert/tls.cert
- --ssl-keyfile
- /mount/cert/tls.key
Deploy Flower Framework without TLS¶
For testing or internal use, you might want to deploy Flower without TLS. Be cautious as this exposes your deployment to potential security risks.
Example configuration for insecure deployment:
global:
insecure: true
superlink:
enabled: true
Pre-provide TLS Certificate¶
If certificate creation is disabled, you must provide a pre-existing secret of type
kubernetes.io/tls
named <flower-server.fullname>-server-tls
.
certificate:
enabled: false
Ingress Configuration¶
SSL-Passthrough¶
When the tls
option is set to true
, it expects the existence of the
<flower-server.fullname>-server-tls
secret. Flower Framework components will load
TLS certificates on startup.
superlink:
enabled: true
ingress:
annotations:
nginx.ingress.kubernetes.io/backend-protocol: GRPCS
nginx.ingress.kubernetes.io/force-ssl-redirect: "false"
nginx.ingress.kubernetes.io/ssl-passthrough: "false"
nginx.ingress.kubernetes.io/ssl-redirect: "false"
ingressClassName: nginx
tls: true
api:
enabled: true
hostname: exec-api.example.com
path: /
pathType: ImplementationSpecific
fleet:
enabled: true
hostname: fleet.example.com
path: /
pathType: ImplementationSpecific
driver:
enabled: true
hostname: driver.example.com
annotations:
nginx.ingress.kubernetes.io/backend-protocol: GRPCS
nginx.ingress.kubernetes.io/force-ssl-redirect: "false"
nginx.ingress.kubernetes.io/ssl-passthrough: "false"
nginx.ingress.kubernetes.io/ssl-redirect: "false"
path: /
pathType: ImplementationSpecific
Pre-Provide TLS Certificate with Additional Hosts
In this example, we use cert-manager
to create a certificate. By default, the
certificate will only include the DNS name specified in common-name
.
In some cases, the server and client charts are deployed in the same cluster, while the exec API is accessible via the internet.
To allow SuperNodes to connect to the SuperLink via the internal service URL, you need to add an additional host, as shown below:
certificate:
enabled: false
superlink:
ingress:
enabled: true
tls: true
annotations:
nginx.ingress.kubernetes.io/backend-protocol: GRPCS
nginx.ingress.kubernetes.io/force-ssl-redirect: "false"
nginx.ingress.kubernetes.io/ssl-passthrough: "false"
nginx.ingress.kubernetes.io/ssl-redirect: "false"
cert-manager.io/cluster-issuer: cert-manager-selfsigned
cert-manager.io/common-name: api.example.com
api:
enabled: true
hostname: api.example.com
extraHosts:
- name: <superlink_name>.<namespace>.svc.cluster.local
pathType: ImplementationSpecific
path: /
port: 9092
Enable Node Authentication¶
global:
insecure: false
nodeAuth:
enabled: true
authListPublicKeys:
- ecdsa-sha2-nistp384 [...]
- ecdsa-sha2-nistp384 [...]
superlink:
enabled: true
superlink:
executor:
plugin: flwr.superexec.deployment:executor
config:
root-certificates: '"/app/cert/ca.crt"'
Public keys can include comments at the end of the key data:
global:
nodeAuth:
authListPublicKeys:
- ecdsa-sha2-nistp384 [...] comment with spaces