DPFedAvgAdaptive¶
- class DPFedAvgAdaptive(strategy: Strategy, num_sampled_clients: int, init_clip_norm: float = 0.1, noise_multiplier: float = 1.0, server_side_noising: bool = True, clip_norm_lr: float = 0.2, clip_norm_target_quantile: float = 0.5, clip_count_stddev: float | None = None)[source]¶
- Bases: - DPFedAvgFixed- Wrapper for configuring a Strategy for DP with Adaptive Clipping. - Warning - This class is deprecated and will be removed in a future release. - Methods - aggregate_evaluate(server_round, results, ...)- Aggregate evaluation losses using the given strategy. - aggregate_fit(server_round, results, failures)- Aggregate training results as in DPFedAvgFixed and update clip norms. - configure_evaluate(server_round, parameters, ...)- Configure the next round of evaluation using the specified strategy. - configure_fit(server_round, parameters, ...)- Configure the next round of training. - evaluate(server_round, parameters)- Evaluate model parameters using an evaluation function from the strategy. - initialize_parameters(client_manager)- Initialize global model parameters using given strategy. - aggregate_evaluate(server_round: int, results: list[tuple[ClientProxy, EvaluateRes]], failures: list[tuple[ClientProxy, EvaluateRes] | BaseException]) tuple[float | None, dict[str, bool | bytes | float | int | str]]¶
- Aggregate evaluation losses using the given strategy. 
 - aggregate_fit(server_round: int, results: list[tuple[ClientProxy, FitRes]], failures: list[tuple[ClientProxy, FitRes] | BaseException]) tuple[Parameters | None, dict[str, bool | bytes | float | int | str]][source]¶
- Aggregate training results as in DPFedAvgFixed and update clip norms. 
 - configure_evaluate(server_round: int, parameters: Parameters, client_manager: ClientManager) list[tuple[ClientProxy, EvaluateIns]]¶
- Configure the next round of evaluation using the specified strategy. - Parameters:
- server_round (int) – The current round of federated learning. 
- parameters (Parameters) – The current (global) model parameters. 
- client_manager (ClientManager) – The client manager which holds all currently connected clients. 
 
- Returns:
- evaluate_configuration – A list of tuples. Each tuple in the list identifies a ClientProxy and the EvaluateIns for this particular ClientProxy. If a particular ClientProxy is not included in this list, it means that this ClientProxy will not participate in the next round of federated evaluation. 
- Return type:
- List[Tuple[ClientProxy, EvaluateIns]] 
 
 - configure_fit(server_round: int, parameters: Parameters, client_manager: ClientManager) list[tuple[ClientProxy, FitIns]][source]¶
- Configure the next round of training. 
 - evaluate(server_round: int, parameters: Parameters) tuple[float, dict[str, bool | bytes | float | int | str]] | None¶
- Evaluate model parameters using an evaluation function from the strategy. 
 - initialize_parameters(client_manager: ClientManager) Parameters | None¶
- Initialize global model parameters using given strategy.