FedXgbBagging¶
- class FedXgbBagging(evaluate_function: Callable[[int, Parameters, dict[str, bool | bytes | float | int | str]], tuple[float, dict[str, bool | bytes | float | int | str]] | None] | None = None, **kwargs: Any)[source]¶
Bases:
FedAvgConfigurable FedXgbBagging strategy implementation.
Methods
aggregate_evaluate(server_round, results, ...)Aggregate evaluation metrics using average.
aggregate_fit(server_round, results, failures)Aggregate fit results using bagging.
configure_evaluate(server_round, parameters, ...)Configure the next round of evaluation.
configure_fit(server_round, parameters, ...)Configure the next round of training.
evaluate(server_round, parameters)Evaluate model parameters using an evaluation function.
initialize_parameters(client_manager)Initialize global model parameters.
num_evaluation_clients(num_available_clients)Use a fraction of available clients for evaluation.
num_fit_clients(num_available_clients)Return the sample size and the required number of available clients.
- aggregate_evaluate(server_round: int, results: list[tuple[ClientProxy, EvaluateRes]], failures: list[tuple[ClientProxy, EvaluateRes] | BaseException]) tuple[float | None, dict[str, bool | bytes | float | int | str]][source]¶
Aggregate evaluation metrics using average.
- aggregate_fit(server_round: int, results: list[tuple[ClientProxy, FitRes]], failures: list[tuple[ClientProxy, FitRes] | BaseException]) tuple[Parameters | None, dict[str, bool | bytes | float | int | str]][source]¶
Aggregate fit results using bagging.
- configure_evaluate(server_round: int, parameters: Parameters, client_manager: ClientManager) list[tuple[ClientProxy, EvaluateIns]]¶
Configure the next round of evaluation.
- configure_fit(server_round: int, parameters: Parameters, client_manager: ClientManager) list[tuple[ClientProxy, FitIns]]¶
Configure the next round of training.
- evaluate(server_round: int, parameters: Parameters) tuple[float, dict[str, bool | bytes | float | int | str]] | None[source]¶
Evaluate model parameters using an evaluation function.
- initialize_parameters(client_manager: ClientManager) Parameters | None¶
Initialize global model parameters.
- num_evaluation_clients(num_available_clients: int) tuple[int, int]¶
Use a fraction of available clients for evaluation.
- num_fit_clients(num_available_clients: int) tuple[int, int]¶
Return the sample size and the required number of available clients.