FedXgbNnAvg¶
- class FedXgbNnAvg(*args: Any, **kwargs: Any)[source]¶
- Bases: - FedAvg- Configurable FedXgbNnAvg strategy implementation. - Warning - This strategy is deprecated, but a copy of it is available in Flower Baselines: https://github.com/adap/flower/tree/main/baselines/hfedxgboost. - Methods - aggregate_evaluate(server_round, results, ...)- Aggregate evaluation losses using weighted average. - aggregate_fit(server_round, results, failures)- Aggregate fit results using weighted average. - configure_evaluate(server_round, parameters, ...)- Configure the next round of evaluation. - configure_fit(server_round, parameters, ...)- Configure the next round of training. - evaluate(server_round, parameters)- Evaluate model parameters using an evaluation function. - initialize_parameters(client_manager)- Initialize global model parameters. - num_evaluation_clients(num_available_clients)- Use a fraction of available clients for evaluation. - num_fit_clients(num_available_clients)- Return the sample size and the required number of available clients. - aggregate_evaluate(server_round: int, results: list[tuple[ClientProxy, EvaluateRes]], failures: list[tuple[ClientProxy, EvaluateRes] | BaseException]) → tuple[float | None, dict[str, bool | bytes | float | int | str]]¶
- Aggregate evaluation losses using weighted average. 
 - aggregate_fit(server_round: int, results: list[tuple[ClientProxy, FitRes]], failures: list[tuple[ClientProxy, FitRes] | BaseException]) → tuple[Any | None, dict[str, bool | bytes | float | int | str]][source]¶
- Aggregate fit results using weighted average. 
 - configure_evaluate(server_round: int, parameters: Parameters, client_manager: ClientManager) → list[tuple[ClientProxy, EvaluateIns]]¶
- Configure the next round of evaluation. 
 - configure_fit(server_round: int, parameters: Parameters, client_manager: ClientManager) → list[tuple[ClientProxy, FitIns]]¶
- Configure the next round of training. 
 - evaluate(server_round: int, parameters: Any) → tuple[float, dict[str, bool | bytes | float | int | str]] | None[source]¶
- Evaluate model parameters using an evaluation function. 
 - initialize_parameters(client_manager: ClientManager) → Parameters | None¶
- Initialize global model parameters. 
 - num_evaluation_clients(num_available_clients: int) → tuple[int, int]¶
- Use a fraction of available clients for evaluation. 
 - num_fit_clients(num_available_clients: int) → tuple[int, int]¶
- Return the sample size and the required number of available clients.