# Copyright 2022 Flower Labs GmbH. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.# =============================================================================="""Machine Learning with Adversaries: Byzantine Tolerant Gradient Descent.[Blanchard et al., 2017].Paper: proceedings.neurips.cc/paper/2017/file/f4b9ec30ad9f68f89b29639786cb62ef-Paper.pdf"""fromloggingimportWARNINGfromtypingimportCallable,Optional,Unionfromflwr.commonimport(FitRes,MetricsAggregationFn,NDArrays,Parameters,Scalar,ndarrays_to_parameters,parameters_to_ndarrays,)fromflwr.common.loggerimportlogfromflwr.server.client_proxyimportClientProxyfrom.aggregateimportaggregate_krumfrom.fedavgimportFedAvg# pylint: disable=line-too-long
[docs]classKrum(FedAvg):"""Krum [Blanchard et al., 2017] strategy. Implementation based on https://arxiv.org/abs/1703.02757 Parameters ---------- fraction_fit : float, optional Fraction of clients used during training. Defaults to 1.0. fraction_evaluate : float, optional Fraction of clients used during validation. Defaults to 1.0. min_fit_clients : int, optional Minimum number of clients used during training. Defaults to 2. min_evaluate_clients : int, optional Minimum number of clients used during validation. Defaults to 2. min_available_clients : int, optional Minimum number of total clients in the system. Defaults to 2. num_malicious_clients : int, optional Number of malicious clients in the system. Defaults to 0. num_clients_to_keep : int, optional Number of clients to keep before averaging (MultiKrum). Defaults to 0, in that case classical Krum is applied. evaluate_fn : Optional[Callable[[int, NDArrays, Dict[str, Scalar]], Optional[Tuple[float, Dict[str, Scalar]]]]] Optional function used for validation. Defaults to None. on_fit_config_fn : Callable[[int], Dict[str, Scalar]], optional Function used to configure training. Defaults to None. on_evaluate_config_fn : Callable[[int], Dict[str, Scalar]], optional Function used to configure validation. Defaults to None. accept_failures : bool, optional Whether or not accept rounds containing failures. Defaults to True. initial_parameters : Parameters, optional Initial global model parameters. """# pylint: disable=too-many-arguments,too-many-instance-attributesdef__init__(self,*,fraction_fit:float=1.0,fraction_evaluate:float=1.0,min_fit_clients:int=2,min_evaluate_clients:int=2,min_available_clients:int=2,num_malicious_clients:int=0,num_clients_to_keep:int=0,evaluate_fn:Optional[Callable[[int,NDArrays,dict[str,Scalar]],Optional[tuple[float,dict[str,Scalar]]],]]=None,on_fit_config_fn:Optional[Callable[[int],dict[str,Scalar]]]=None,on_evaluate_config_fn:Optional[Callable[[int],dict[str,Scalar]]]=None,accept_failures:bool=True,initial_parameters:Optional[Parameters]=None,fit_metrics_aggregation_fn:Optional[MetricsAggregationFn]=None,evaluate_metrics_aggregation_fn:Optional[MetricsAggregationFn]=None,)->None:super().__init__(fraction_fit=fraction_fit,fraction_evaluate=fraction_evaluate,min_fit_clients=min_fit_clients,min_evaluate_clients=min_evaluate_clients,min_available_clients=min_available_clients,evaluate_fn=evaluate_fn,on_fit_config_fn=on_fit_config_fn,on_evaluate_config_fn=on_evaluate_config_fn,accept_failures=accept_failures,initial_parameters=initial_parameters,fit_metrics_aggregation_fn=fit_metrics_aggregation_fn,evaluate_metrics_aggregation_fn=evaluate_metrics_aggregation_fn,)self.num_malicious_clients=num_malicious_clientsself.num_clients_to_keep=num_clients_to_keepdef__repr__(self)->str:"""Compute a string representation of the strategy."""rep=f"Krum(accept_failures={self.accept_failures})"returnrep
[docs]defaggregate_fit(self,server_round:int,results:list[tuple[ClientProxy,FitRes]],failures:list[Union[tuple[ClientProxy,FitRes],BaseException]],)->tuple[Optional[Parameters],dict[str,Scalar]]:"""Aggregate fit results using Krum."""ifnotresults:returnNone,{}# Do not aggregate if there are failures and failures are not acceptedifnotself.accept_failuresandfailures:returnNone,{}# Convert resultsweights_results=[(parameters_to_ndarrays(fit_res.parameters),fit_res.num_examples)for_,fit_resinresults]parameters_aggregated=ndarrays_to_parameters(aggregate_krum(weights_results,self.num_malicious_clients,self.num_clients_to_keep))# Aggregate custom metrics if aggregation fn was providedmetrics_aggregated={}ifself.fit_metrics_aggregation_fn:fit_metrics=[(res.num_examples,res.metrics)for_,resinresults]metrics_aggregated=self.fit_metrics_aggregation_fn(fit_metrics)elifserver_round==1:# Only log this warning oncelog(WARNING,"No fit_metrics_aggregation_fn provided")returnparameters_aggregated,metrics_aggregated