Source code for flwr.serverapp.strategy.fedxgb_bagging

# Copyright 2025 Flower Labs GmbH. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Flower message-based FedXgbBagging strategy."""
from collections.abc import Iterable
from typing import Optional, cast

import numpy as np

from flwr.common import ArrayRecord, ConfigRecord, Message, MetricRecord
from flwr.server import Grid

from ..exception import InconsistentMessageReplies
from .fedavg import FedAvg
from .strategy_utils import aggregate_bagging


# pylint: disable=line-too-long
[docs] class FedXgbBagging(FedAvg): """Configurable FedXgbBagging strategy implementation. Parameters ---------- fraction_train : float (default: 1.0) Fraction of nodes used during training. In case `min_train_nodes` is larger than `fraction_train * total_connected_nodes`, `min_train_nodes` will still be sampled. fraction_evaluate : float (default: 1.0) Fraction of nodes used during validation. In case `min_evaluate_nodes` is larger than `fraction_evaluate * total_connected_nodes`, `min_evaluate_nodes` will still be sampled. min_train_nodes : int (default: 2) Minimum number of nodes used during training. min_evaluate_nodes : int (default: 2) Minimum number of nodes used during validation. min_available_nodes : int (default: 2) Minimum number of total nodes in the system. weighted_by_key : str (default: "num-examples") The key within each MetricRecord whose value is used as the weight when computing weighted averages for MetricRecords. arrayrecord_key : str (default: "arrays") Key used to store the ArrayRecord when constructing Messages. configrecord_key : str (default: "config") Key used to store the ConfigRecord when constructing Messages. train_metrics_aggr_fn : Optional[callable] (default: None) Function with signature (list[RecordDict], str) -> MetricRecord, used to aggregate MetricRecords from training round replies. If `None`, defaults to `aggregate_metricrecords`, which performs a weighted average using the provided weight factor key. evaluate_metrics_aggr_fn : Optional[callable] (default: None) Function with signature (list[RecordDict], str) -> MetricRecord, used to aggregate MetricRecords from training round replies. If `None`, defaults to `aggregate_metricrecords`, which performs a weighted average using the provided weight factor key. """ current_bst: Optional[bytes] = None def _ensure_single_array(self, arrays: ArrayRecord) -> None: """Check that ensures there's only one Array in the ArrayRecord.""" n = len(arrays) if n != 1: raise InconsistentMessageReplies( reason="Expected exactly one Array in ArrayRecord. " "Skipping aggregation." )
[docs] def configure_train( self, server_round: int, arrays: ArrayRecord, config: ConfigRecord, grid: Grid ) -> Iterable[Message]: """Configure the next round of federated training.""" self._ensure_single_array(arrays) # Keep track of array record being communicated self.current_bst = arrays["0"].numpy().tobytes() return super().configure_train(server_round, arrays, config, grid)
[docs] def aggregate_train( self, server_round: int, replies: Iterable[Message], ) -> tuple[Optional[ArrayRecord], Optional[MetricRecord]]: """Aggregate ArrayRecords and MetricRecords in the received Messages.""" valid_replies, _ = self._check_and_log_replies(replies, is_train=True) arrays, metrics = None, None if valid_replies: reply_contents = [msg.content for msg in valid_replies] array_record_key = next(iter(reply_contents[0].array_records.keys())) # Aggregate ArrayRecords for content in reply_contents: self._ensure_single_array(cast(ArrayRecord, content[array_record_key])) bst = content[array_record_key]["0"].numpy().tobytes() # type: ignore[union-attr] if self.current_bst is not None: self.current_bst = aggregate_bagging(self.current_bst, bst) if self.current_bst is not None: arrays = ArrayRecord([np.frombuffer(self.current_bst, dtype=np.uint8)]) # Aggregate MetricRecords metrics = self.train_metrics_aggr_fn( reply_contents, self.weighted_by_key, ) return arrays, metrics