배열¶
- class Array(dtype: str, shape: tuple[int, ...], stype: str, data: bytes)[소스]¶
- class Array(ndarray: ndarray[Any, dtype[Any]])
- class Array(torch_tensor: torch.Tensor)
- 기반 클래스: - InflatableObject- 배열 유형. - A dataclass containing serialized data from an array-like or tensor-like object along with metadata about it. The class can be initialized in one of three ways: - By specifying explicit values for dtype, shape, stype, and data. 
- By providing a NumPy ndarray (via the ndarray argument). 
- By providing a PyTorch tensor (via the torch_tensor argument). 
 - In scenarios (2)-(3), the dtype, shape, stype, and data are automatically derived from the input. In scenario (1), these fields must be specified manually. - 매개변수:
- dtype (Optional[str] (default: None)) – A string representing the data type of the serialized object (e.g. “float32”). Only required if you are not passing in a ndarray or a tensor. 
- shape (Optional[tuple[int, ...]] (default: None)) – A tuple representing the shape of the unserialized array-like object. Only required if you are not passing in a ndarray or a tensor. 
- stype (Optional[str] (default: None)) – A string indicating the serialization mechanism used to generate the bytes in data from an array-like or tensor-like object. Only required if you are not passing in a ndarray or a tensor. 
- data (Optional[bytes] (default: None)) – A buffer of bytes containing the data. Only required if you are not passing in a ndarray or a tensor. 
- ndarray (Optional[NDArray] (default: None)) – A NumPy ndarray. If provided, the dtype, shape, stype, and data fields are derived automatically from it. 
- torch_tensor (Optional[torch.Tensor] (default: None)) – A PyTorch tensor. If provided, it will be detached and moved to CPU before conversion, and the dtype, shape, stype, and data fields will be derived automatically from it. 
 
 - 예제 - Initializing by specifying all fields directly: - arr1 = Array( dtype="float32", shape=[3, 3], stype="numpy.ndarray", data=b"serialized_data...", ) - Initializing with a NumPy ndarray: - import numpy as np arr2 = Array(np.random.randn(3, 3)) - Initializing with a PyTorch tensor: - import torch arr3 = Array(torch.randn(3, 3)) - 메소드 - deflate()- Deflate the Array. - from_numpy_ndarray(ndarray)- NumPy에서 배열을 만듭니다. - from_torch_tensor(tensor)- Create Array from PyTorch tensor. - inflate(object_content[, children])- Inflate an Array from bytes. - numpy()- 배열을 NumPy 배열로 반환합니다. - Slice Array data and construct a list of ArrayChunks. - 속성 - Return a dictionary of ArrayChunks with their Object IDs as keys. - Check if the object is dirty after the last deflation. - Get object ID. - dtype- shape- stype- data- property children: dict[str, InflatableObject]¶
- Return a dictionary of ArrayChunks with their Object IDs as keys. 
 - classmethod inflate(object_content: bytes, children: dict[str, InflatableObject] | None = None) Array[소스]¶
- Inflate an Array from bytes. - 매개변수:
- object_content (bytes) – The deflated object content of the Array. 
- children (Optional[dict[str, InflatableObject]] (default: None)) – Must be - None.- Arraymust have child objects. Providing no children will raise a- ValueError.
 
- 반환:
- The inflated Array. 
- 반환 형식:
 
 - property is_dirty: bool¶
- Check if the object is dirty after the last deflation. 
 - property object_id: str¶
- Get object ID.