전략 사용하기

Flower allows full customization of the learning process through the Strategy abstraction. A number of built-in strategies are provided in the core framework.

서버 측에서 Flower가 학습 과정을 조율하는 방식을 사용자 지정하는 방법에는 세 가지가 있습니다:

  • Use an existing strategy, for example, FedAvg

  • 콜백 함수로 기존 전략 사용자 지정

  • 새로운 전략 구현

기존 전략 사용

Flower에는 여러 가지 인기 있는 연합 학습 전략이 기본으로 제공됩니다. 기본 제공 전략은 다음과 같이 인스턴스화할 수 있습니다:

import flwr as fl

strategy = fl.server.strategy.FedAvg()
fl.server.start_server(config=fl.server.ServerConfig(num_rounds=3), strategy=strategy)

This creates a strategy with all parameters left at their default values and passes it to the start_server function. It is usually recommended to adjust a few parameters during instantiation:

import flwr as fl

strategy = fl.server.strategy.FedAvg(
    fraction_fit=0.1,  # Sample 10% of available clients for the next round
    min_fit_clients=10,  # Minimum number of clients to be sampled for the next round
    min_available_clients=80,  # Minimum number of clients that need to be connected to the server before a training round can start
)
fl.server.start_server(config=fl.server.ServerConfig(num_rounds=3), strategy=strategy)

콜백 함수로 기존 전략 사용자 지정

기존 전략은 동작을 사용자 지정하는 여러 가지 방법을 제공합니다. 콜백 함수를 사용하면 전략이 실행 중에 사용자가 제공한 코드를 호출할 수 있습니다.

클라이언트 적합성 및 클라이언트 평가 구성

The server can pass new configuration values to the client each round by providing a function to on_fit_config_fn. The provided function will be called by the strategy and must return a dictionary of configuration key values pairs that will be sent to the client. It must return a dictionary of arbitrary configuration values client.fit and client.evaluate functions during each round of federated learning.

import flwr as fl


def get_on_fit_config_fn() -> Callable[[int], Dict[str, str]]:
    """Return a function which returns training configurations."""

    def fit_config(server_round: int) -> Dict[str, str]:
        """Return a configuration with static batch size and (local) epochs."""
        config = {
            "learning_rate": str(0.001),
            "batch_size": str(32),
        }
        return config

    return fit_config


strategy = fl.server.strategy.FedAvg(
    fraction_fit=0.1,
    min_fit_clients=10,
    min_available_clients=80,
    on_fit_config_fn=get_on_fit_config_fn(),
)
fl.server.start_server(config=fl.server.ServerConfig(num_rounds=3), strategy=strategy)

The on_fit_config_fn can be used to pass arbitrary configuration values from server to client, and potentially change these values each round, for example, to adjust the learning rate. The client will receive the dictionary returned by the on_fit_config_fn in its own client.fit() function.

Similar to on_fit_config_fn, there is also on_evaluate_config_fn to customize the configuration sent to client.evaluate()

서버 측 평가 구성

Server-side evaluation can be enabled by passing an evaluation function to evaluate_fn.

새로운 전략 구현

완전한 사용자 지정 전략을 작성하는 것은 조금 더 복잡하지만 유연성이 가장 뛰어납니다. 자세한 내용은 Implementing Strategies 가이드를 참조하세요.