Quickstart PyTorch Lightning¶
In this federated learning tutorial we will learn how to train an AutoEncoder model on MNIST using Flower and PyTorch Lightning. It is recommended to create a virtual environment and run everything within a virtualenv.
Then, clone the code example directly from GitHub:
git clone --depth=1 https://github.com/adap/flower.git _tmp \
&& mv _tmp/examples/quickstart-pytorch-lightning . \
&& rm -rf _tmp && cd quickstart-pytorch-lightning
This will create a new directory called quickstart-pytorch-lightning containing the following files:
quickstart-pytorch-lightning
├── pytorchlightning_example
│ ├── client_app.py # Defines your ClientApp
│ ├── server_app.py # Defines your ServerApp
│ └── task.py # Defines your model, training and data loading
├── pyproject.toml # Project metadata like dependencies and configs
└── README.md
Next, activate your environment, then run:
# Navigate to the example directory
$ cd path/to/quickstart-pytorch-lightning
# Install project and dependencies
$ pip install -e .
By default, Flower Simulation Engine will be started and it will create a federation of 4 nodes using FedAvg as the aggregation strategy. The dataset will be partitioned using Flower Dataset’s IidPartitioner. To run the project, do:
# Run with default arguments
$ flwr run .
With default arguments you will see an output like this one:
Loading project configuration...
Success
INFO : Starting Flower ServerApp, config: num_rounds=3, no round_timeout
INFO :
INFO : [INIT]
INFO : Using initial global parameters provided by strategy
INFO : Starting evaluation of initial global parameters
INFO : Evaluation returned no results (`None`)
INFO :
INFO : [ROUND 1]
INFO : configure_fit: strategy sampled 2 clients (out of 4)
INFO : aggregate_evaluate: received 2 results and 0 failures
WARNING : No evaluate_metrics_aggregation_fn provided
INFO :
INFO : [ROUND 2]
INFO : configure_fit: strategy sampled 2 clients (out of 4)
INFO : aggregate_fit: received 2 results and 0 failures
INFO : configure_evaluate: strategy sampled 2 clients (out of 4)
INFO : aggregate_evaluate: received 2 results and 0 failures
INFO :
INFO : [ROUND 3]
INFO : configure_fit: strategy sampled 2 clients (out of 4)
INFO : aggregate_fit: received 2 results and 0 failures
INFO : configure_evaluate: strategy sampled 2 clients (out of 4)
INFO : aggregate_evaluate: received 2 results and 0 failures
INFO :
INFO : [SUMMARY]
INFO : Run finished 3 round(s) in 136.92s
INFO : History (loss, distributed):
INFO : round 1: 0.04982871934771538
INFO : round 2: 0.046457378193736076
INFO : round 3: 0.04506748169660568
INFO :
Each simulated ClientApp (two per round) will also log a summary of their local training process. Expect this output to be similar to:
# The left part indicates the process ID running the `ClientApp`
(ClientAppActor pid=38155) ┏━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
(ClientAppActor pid=38155) ┃ Test metric ┃ DataLoader 0 ┃
(ClientAppActor pid=38155) ┡━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
(ClientAppActor pid=38155) │ test_loss │ 0.045175597071647644 │
(ClientAppActor pid=38155) └───────────────────────────┴───────────────────────────┘
You can also override the parameters defined in the [tool.flwr.app.config]
section
in pyproject.toml
like this:
# Override some arguments
$ flwr run . --run-config num-server-rounds=5
참고
Check the source code
of this tutorial in examples/quickstart-pytorch-lightning
in the Flower GitHub
repository.