Quickstart PyTorch Lightningยถ

In this federated learning tutorial we will learn how to train an AutoEncoder model on MNIST using Flower and PyTorch Lightning. It is recommended to create a virtual environment and run everything within a virtualenv.

Then, clone the code example directly from GitHub:

git clone --depth=1 https://github.com/adap/flower.git _tmp \
             && mv _tmp/examples/quickstart-pytorch-lightning . \
             && rm -rf _tmp && cd quickstart-pytorch-lightning

This will create a new directory called quickstart-pytorch-lightning containing the following files:

quickstart-pytorch-lightning
โ”œโ”€โ”€ pytorchlightning_example
โ”‚   โ”œโ”€โ”€ client_app.py   # Defines your ClientApp
โ”‚   โ”œโ”€โ”€ server_app.py   # Defines your ServerApp
โ”‚   โ””โ”€โ”€ task.py         # Defines your model, training and data loading
โ”œโ”€โ”€ pyproject.toml      # Project metadata like dependencies and configs
โ””โ”€โ”€ README.md

Next, activate your environment, then run:

# Navigate to the example directory
$ cd path/to/quickstart-pytorch-lightning

# Install project and dependencies
$ pip install -e .

By default, Flower Simulation Engine will be started and it will create a federation of 4 nodes using FedAvg as the aggregation strategy. The dataset will be partitioned using Flower Datasetโ€™s IidPartitioner. To run the project, do:

# Run with default arguments
$ flwr run .

With default arguments you will see an output like this one:

Loading project configuration...
Success
INFO :      Starting Flower ServerApp, config: num_rounds=3, no round_timeout
INFO :
INFO :      [INIT]
INFO :      Using initial global parameters provided by strategy
INFO :      Starting evaluation of initial global parameters
INFO :      Evaluation returned no results (`None`)
INFO :
INFO :      [ROUND 1]
INFO :      configure_fit: strategy sampled 2 clients (out of 4)
INFO :      aggregate_evaluate: received 2 results and 0 failures
WARNING :   No evaluate_metrics_aggregation_fn provided
INFO :
INFO :      [ROUND 2]
INFO :      configure_fit: strategy sampled 2 clients (out of 4)
INFO :      aggregate_fit: received 2 results and 0 failures
INFO :      configure_evaluate: strategy sampled 2 clients (out of 4)
INFO :      aggregate_evaluate: received 2 results and 0 failures
INFO :
INFO :      [ROUND 3]
INFO :      configure_fit: strategy sampled 2 clients (out of 4)
INFO :      aggregate_fit: received 2 results and 0 failures
INFO :      configure_evaluate: strategy sampled 2 clients (out of 4)
INFO :      aggregate_evaluate: received 2 results and 0 failures
INFO :
INFO :      [SUMMARY]
INFO :      Run finished 3 round(s) in 136.92s
INFO :          History (loss, distributed):
INFO :                  round 1: 0.04982871934771538
INFO :                  round 2: 0.046457378193736076
INFO :                  round 3: 0.04506748169660568
INFO :

Each simulated ClientApp (two per round) will also log a summary of their local training process. Expect this output to be similar to:

# The left part indicates the process ID running the `ClientApp`
(ClientAppActor pid=38155) โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ณโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”“
(ClientAppActor pid=38155) โ”ƒ        Test metric        โ”ƒ       DataLoader 0        โ”ƒ
(ClientAppActor pid=38155) โ”กโ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ•‡โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”โ”ฉ
(ClientAppActor pid=38155) โ”‚         test_loss         โ”‚   0.045175597071647644    โ”‚
(ClientAppActor pid=38155) โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

You can also override the parameters defined in the [tool.flwr.app.config] section in pyproject.toml like this:

# Override some arguments
$ flwr run . --run-config num-server-rounds=5

์ฐธ๊ณ 

Check the source code of this tutorial in examples/quickstart-pytorch-lightning in the Flower GitHub repository.