flwr.server.strategy.dp_fixed_clipping의 소스 코드

# Copyright 2024 Flower Labs GmbH. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Central differential privacy with fixed clipping.

Papers: https://arxiv.org/abs/1712.07557, https://arxiv.org/abs/1710.06963
"""


from logging import INFO, WARNING
from typing import Optional, Union

from flwr.common import (
    EvaluateIns,
    EvaluateRes,
    FitIns,
    FitRes,
    NDArrays,
    Parameters,
    Scalar,
    ndarrays_to_parameters,
    parameters_to_ndarrays,
)
from flwr.common.differential_privacy import (
    add_gaussian_noise_to_params,
    compute_clip_model_update,
    compute_stdv,
)
from flwr.common.differential_privacy_constants import (
    CLIENTS_DISCREPANCY_WARNING,
    KEY_CLIPPING_NORM,
)
from flwr.common.logger import log
from flwr.server.client_manager import ClientManager
from flwr.server.client_proxy import ClientProxy
from flwr.server.strategy.strategy import Strategy


[문서] class DifferentialPrivacyServerSideFixedClipping(Strategy): """Strategy wrapper for central DP with server-side fixed clipping. Parameters ---------- strategy : Strategy The strategy to which DP functionalities will be added by this wrapper. noise_multiplier : float The noise multiplier for the Gaussian mechanism for model updates. A value of 1.0 or higher is recommended for strong privacy. clipping_norm : float The value of the clipping norm. num_sampled_clients : int The number of clients that are sampled on each round. Examples -------- Create a strategy: >>> strategy = fl.server.strategy.FedAvg( ... ) Wrap the strategy with the DifferentialPrivacyServerSideFixedClipping wrapper >>> dp_strategy = DifferentialPrivacyServerSideFixedClipping( >>> strategy, cfg.noise_multiplier, cfg.clipping_norm, cfg.num_sampled_clients >>> ) """ # pylint: disable=too-many-arguments,too-many-instance-attributes def __init__( self, strategy: Strategy, noise_multiplier: float, clipping_norm: float, num_sampled_clients: int, ) -> None: super().__init__() self.strategy = strategy if noise_multiplier < 0: raise ValueError("The noise multiplier should be a non-negative value.") if clipping_norm <= 0: raise ValueError("The clipping norm should be a positive value.") if num_sampled_clients <= 0: raise ValueError( "The number of sampled clients should be a positive value." ) self.noise_multiplier = noise_multiplier self.clipping_norm = clipping_norm self.num_sampled_clients = num_sampled_clients self.current_round_params: NDArrays = [] def __repr__(self) -> str: """Compute a string representation of the strategy.""" rep = "Differential Privacy Strategy Wrapper (Server-Side Fixed Clipping)" return rep
[문서] def initialize_parameters( self, client_manager: ClientManager ) -> Optional[Parameters]: """Initialize global model parameters using given strategy.""" return self.strategy.initialize_parameters(client_manager)
[문서] def configure_fit( self, server_round: int, parameters: Parameters, client_manager: ClientManager ) -> list[tuple[ClientProxy, FitIns]]: """Configure the next round of training.""" self.current_round_params = parameters_to_ndarrays(parameters) return self.strategy.configure_fit(server_round, parameters, client_manager)
[문서] def configure_evaluate( self, server_round: int, parameters: Parameters, client_manager: ClientManager ) -> list[tuple[ClientProxy, EvaluateIns]]: """Configure the next round of evaluation.""" return self.strategy.configure_evaluate( server_round, parameters, client_manager )
[문서] def aggregate_fit( self, server_round: int, results: list[tuple[ClientProxy, FitRes]], failures: list[Union[tuple[ClientProxy, FitRes], BaseException]], ) -> tuple[Optional[Parameters], dict[str, Scalar]]: """Compute the updates, clip, and pass them for aggregation. Afterward, add noise to the aggregated parameters. """ if failures: return None, {} if len(results) != self.num_sampled_clients: log( WARNING, CLIENTS_DISCREPANCY_WARNING, len(results), self.num_sampled_clients, ) for _, res in results: param = parameters_to_ndarrays(res.parameters) # Compute and clip update compute_clip_model_update( param, self.current_round_params, self.clipping_norm ) log( INFO, "aggregate_fit: parameters are clipped by value: %.4f.", self.clipping_norm, ) # Convert back to parameters res.parameters = ndarrays_to_parameters(param) # Pass the new parameters for aggregation aggregated_params, metrics = self.strategy.aggregate_fit( server_round, results, failures ) # Add Gaussian noise to the aggregated parameters if aggregated_params: aggregated_params = add_gaussian_noise_to_params( aggregated_params, self.noise_multiplier, self.clipping_norm, self.num_sampled_clients, ) log( INFO, "aggregate_fit: central DP noise with %.4f stdev added", compute_stdv( self.noise_multiplier, self.clipping_norm, self.num_sampled_clients ), ) return aggregated_params, metrics
[문서] def aggregate_evaluate( self, server_round: int, results: list[tuple[ClientProxy, EvaluateRes]], failures: list[Union[tuple[ClientProxy, EvaluateRes], BaseException]], ) -> tuple[Optional[float], dict[str, Scalar]]: """Aggregate evaluation losses using the given strategy.""" return self.strategy.aggregate_evaluate(server_round, results, failures)
[문서] def evaluate( self, server_round: int, parameters: Parameters ) -> Optional[tuple[float, dict[str, Scalar]]]: """Evaluate model parameters using an evaluation function from the strategy.""" return self.strategy.evaluate(server_round, parameters)
[문서] class DifferentialPrivacyClientSideFixedClipping(Strategy): """Strategy wrapper for central DP with client-side fixed clipping. Use `fixedclipping_mod` modifier at the client side. In comparison to `DifferentialPrivacyServerSideFixedClipping`, which performs clipping on the server-side, `DifferentialPrivacyClientSideFixedClipping` expects clipping to happen on the client-side, usually by using the built-in `fixedclipping_mod`. Parameters ---------- strategy : Strategy The strategy to which DP functionalities will be added by this wrapper. noise_multiplier : float The noise multiplier for the Gaussian mechanism for model updates. A value of 1.0 or higher is recommended for strong privacy. clipping_norm : float The value of the clipping norm. num_sampled_clients : int The number of clients that are sampled on each round. Examples -------- Create a strategy: >>> strategy = fl.server.strategy.FedAvg(...) Wrap the strategy with the `DifferentialPrivacyClientSideFixedClipping` wrapper: >>> dp_strategy = DifferentialPrivacyClientSideFixedClipping( >>> strategy, cfg.noise_multiplier, cfg.clipping_norm, cfg.num_sampled_clients >>> ) On the client, add the `fixedclipping_mod` to the client-side mods: >>> app = fl.client.ClientApp( >>> client_fn=client_fn, mods=[fixedclipping_mod] >>> ) """ # pylint: disable=too-many-arguments,too-many-instance-attributes def __init__( self, strategy: Strategy, noise_multiplier: float, clipping_norm: float, num_sampled_clients: int, ) -> None: super().__init__() self.strategy = strategy if noise_multiplier < 0: raise ValueError("The noise multiplier should be a non-negative value.") if clipping_norm <= 0: raise ValueError("The clipping threshold should be a positive value.") if num_sampled_clients <= 0: raise ValueError( "The number of sampled clients should be a positive value." ) self.noise_multiplier = noise_multiplier self.clipping_norm = clipping_norm self.num_sampled_clients = num_sampled_clients def __repr__(self) -> str: """Compute a string representation of the strategy.""" rep = "Differential Privacy Strategy Wrapper (Client-Side Fixed Clipping)" return rep
[문서] def initialize_parameters( self, client_manager: ClientManager ) -> Optional[Parameters]: """Initialize global model parameters using given strategy.""" return self.strategy.initialize_parameters(client_manager)
[문서] def configure_fit( self, server_round: int, parameters: Parameters, client_manager: ClientManager ) -> list[tuple[ClientProxy, FitIns]]: """Configure the next round of training.""" additional_config = {KEY_CLIPPING_NORM: self.clipping_norm} inner_strategy_config_result = self.strategy.configure_fit( server_round, parameters, client_manager ) for _, fit_ins in inner_strategy_config_result: fit_ins.config.update(additional_config) return inner_strategy_config_result
[문서] def configure_evaluate( self, server_round: int, parameters: Parameters, client_manager: ClientManager ) -> list[tuple[ClientProxy, EvaluateIns]]: """Configure the next round of evaluation.""" return self.strategy.configure_evaluate( server_round, parameters, client_manager )
[문서] def aggregate_fit( self, server_round: int, results: list[tuple[ClientProxy, FitRes]], failures: list[Union[tuple[ClientProxy, FitRes], BaseException]], ) -> tuple[Optional[Parameters], dict[str, Scalar]]: """Add noise to the aggregated parameters.""" if failures: return None, {} if len(results) != self.num_sampled_clients: log( WARNING, CLIENTS_DISCREPANCY_WARNING, len(results), self.num_sampled_clients, ) # Pass the new parameters for aggregation aggregated_params, metrics = self.strategy.aggregate_fit( server_round, results, failures ) # Add Gaussian noise to the aggregated parameters if aggregated_params: aggregated_params = add_gaussian_noise_to_params( aggregated_params, self.noise_multiplier, self.clipping_norm, self.num_sampled_clients, ) log( INFO, "aggregate_fit: central DP noise with %.4f stdev added", compute_stdv( self.noise_multiplier, self.clipping_norm, self.num_sampled_clients ), ) return aggregated_params, metrics
[문서] def aggregate_evaluate( self, server_round: int, results: list[tuple[ClientProxy, EvaluateRes]], failures: list[Union[tuple[ClientProxy, EvaluateRes], BaseException]], ) -> tuple[Optional[float], dict[str, Scalar]]: """Aggregate evaluation losses using the given strategy.""" return self.strategy.aggregate_evaluate(server_round, results, failures)
[문서] def evaluate( self, server_round: int, parameters: Parameters ) -> Optional[tuple[float, dict[str, Scalar]]]: """Evaluate model parameters using an evaluation function from the strategy.""" return self.strategy.evaluate(server_round, parameters)