FedXgbCyclic#

class FedXgbCyclic(**kwargs: Any)[소스]#

기반 클래스: FedAvg

Configurable FedXgbCyclic strategy implementation.

메소드

aggregate_evaluate(server_round, results, ...)

Aggregate evaluation metrics using average.

aggregate_fit(server_round, results, failures)

Aggregate fit results using bagging.

configure_evaluate(server_round, parameters, ...)

Configure the next round of evaluation.

configure_fit(server_round, parameters, ...)

Configure the next round of training.

evaluate(server_round, parameters)

Evaluate model parameters using an evaluation function.

initialize_parameters(client_manager)

Initialize global model parameters.

num_evaluation_clients(num_available_clients)

Use a fraction of available clients for evaluation.

num_fit_clients(num_available_clients)

Return the sample size and the required number of available clients.

aggregate_evaluate(server_round: int, results: list[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.EvaluateRes]], failures: list[Union[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.EvaluateRes], BaseException]]) tuple[Optional[float], dict[str, Union[bool, bytes, float, int, str]]][소스]#

Aggregate evaluation metrics using average.

aggregate_fit(server_round: int, results: list[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.FitRes]], failures: list[Union[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.FitRes], BaseException]]) tuple[Optional[flwr.common.typing.Parameters], dict[str, Union[bool, bytes, float, int, str]]][소스]#

Aggregate fit results using bagging.

configure_evaluate(server_round: int, parameters: Parameters, client_manager: ClientManager) list[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.EvaluateIns]][소스]#

Configure the next round of evaluation.

configure_fit(server_round: int, parameters: Parameters, client_manager: ClientManager) list[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.FitIns]][소스]#

Configure the next round of training.

evaluate(server_round: int, parameters: Parameters) tuple[float, dict[str, Union[bool, bytes, float, int, str]]] | None#

Evaluate model parameters using an evaluation function.

initialize_parameters(client_manager: ClientManager) Parameters | None#

Initialize global model parameters.

num_evaluation_clients(num_available_clients: int) tuple[int, int]#

Use a fraction of available clients for evaluation.

num_fit_clients(num_available_clients: int) tuple[int, int]#

Return the sample size and the required number of available clients.