FedXgbCyclic#
- class FedXgbCyclic(**kwargs: Any)[소스]#
기반 클래스:
FedAvg
Configurable FedXgbCyclic strategy implementation.
메소드
aggregate_evaluate
(server_round, results, ...)Aggregate evaluation metrics using average.
aggregate_fit
(server_round, results, failures)Aggregate fit results using bagging.
configure_evaluate
(server_round, parameters, ...)Configure the next round of evaluation.
configure_fit
(server_round, parameters, ...)Configure the next round of training.
evaluate
(server_round, parameters)Evaluate model parameters using an evaluation function.
initialize_parameters
(client_manager)Initialize global model parameters.
num_evaluation_clients
(num_available_clients)Use a fraction of available clients for evaluation.
num_fit_clients
(num_available_clients)Return the sample size and the required number of available clients.
- aggregate_evaluate(server_round: int, results: list[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.EvaluateRes]], failures: list[Union[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.EvaluateRes], BaseException]]) tuple[Optional[float], dict[str, Union[bool, bytes, float, int, str]]] [소스]#
Aggregate evaluation metrics using average.
- aggregate_fit(server_round: int, results: list[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.FitRes]], failures: list[Union[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.FitRes], BaseException]]) tuple[Optional[flwr.common.typing.Parameters], dict[str, Union[bool, bytes, float, int, str]]] [소스]#
Aggregate fit results using bagging.
- configure_evaluate(server_round: int, parameters: Parameters, client_manager: ClientManager) list[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.EvaluateIns]] [소스]#
Configure the next round of evaluation.
- configure_fit(server_round: int, parameters: Parameters, client_manager: ClientManager) list[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.FitIns]] [소스]#
Configure the next round of training.
- evaluate(server_round: int, parameters: Parameters) tuple[float, dict[str, Union[bool, bytes, float, int, str]]] | None #
Evaluate model parameters using an evaluation function.
- initialize_parameters(client_manager: ClientManager) Parameters | None #
Initialize global model parameters.
- num_evaluation_clients(num_available_clients: int) tuple[int, int] #
Use a fraction of available clients for evaluation.
- num_fit_clients(num_available_clients: int) tuple[int, int] #
Return the sample size and the required number of available clients.