FedAdagrad

class FedAdagrad(*, fraction_fit: float = 1.0, fraction_evaluate: float = 1.0, min_fit_clients: int = 2, min_evaluate_clients: int = 2, min_available_clients: int = 2, evaluate_fn: Callable[[int, list[ndarray[Any, dtype[Any]]], dict[str, bool | bytes | float | int | str]], tuple[float, dict[str, bool | bytes | float | int | str]] | None] | None = None, on_fit_config_fn: Callable[[int], dict[str, bool | bytes | float | int | str]] | None = None, on_evaluate_config_fn: Callable[[int], dict[str, bool | bytes | float | int | str]] | None = None, fit_metrics_aggregation_fn: Callable[[list[tuple[int, dict[str, bool | bytes | float | int | str]]]], dict[str, bool | bytes | float | int | str]] | None = None, evaluate_metrics_aggregation_fn: Callable[[list[tuple[int, dict[str, bool | bytes | float | int | str]]]], dict[str, bool | bytes | float | int | str]] | None = None, accept_failures: bool = True, initial_parameters: Parameters, eta: float = 0.1, eta_l: float = 0.1, tau: float = 1e-09)[소스]

기반 클래스: FedOpt

FedAdagrad strategy - Adaptive Federated Optimization using Adagrad.

Implementation based on https://arxiv.org/abs/2003.00295v5

매개변수:
  • fraction_fit (float, optional) – Fraction of clients used during training. Defaults to 1.0.

  • fraction_evaluate (float, optional) – Fraction of clients used during validation. Defaults to 1.0.

  • min_fit_clients (int, optional) – Minimum number of clients used during training. Defaults to 2.

  • min_evaluate_clients (int, optional) – Minimum number of clients used during validation. Defaults to 2.

  • min_available_clients (int, optional) – Minimum number of total clients in the system. Defaults to 2.

  • evaluate_fn (Optional[Callable[[int, NDArrays, Dict[str, Scalar]],Optional[Tuple[float, Dict[str, Scalar]]]]]) – Optional function used for validation. Defaults to None.

  • on_fit_config_fn (Callable[[int], Dict[str, Scalar]], optional) – Function used to configure training. Defaults to None.

  • on_evaluate_config_fn (Callable[[int], Dict[str, Scalar]], optional) – Function used to configure validation. Defaults to None.

  • fit_metrics_aggregation_fn (Optional[MetricsAggregationFn]) – Metrics aggregation function, optional.

  • evaluate_metrics_aggregation_fn (Optional[MetricsAggregationFn]) – Metrics aggregation function, optional.

  • accept_failures (bool, optional) – Whether or not accept rounds containing failures. Defaults to True.

  • initial_parameters (Parameters) – Initial global model parameters.

  • eta (float, optional) – Server-side learning rate. Defaults to 1e-1.

  • eta_l (float, optional) – Client-side learning rate. Defaults to 1e-1.

  • tau (float, optional) – Controls the algorithm’s degree of adaptability. Defaults to 1e-9.

메소드

aggregate_evaluate(server_round, results, ...)

Aggregate evaluation losses using weighted average.

aggregate_fit(server_round, results, failures)

Aggregate fit results using weighted average.

configure_evaluate(server_round, parameters, ...)

Configure the next round of evaluation.

configure_fit(server_round, parameters, ...)

Configure the next round of training.

evaluate(server_round, parameters)

Evaluate model parameters using an evaluation function.

initialize_parameters(client_manager)

Initialize global model parameters.

num_evaluation_clients(num_available_clients)

Use a fraction of available clients for evaluation.

num_fit_clients(num_available_clients)

Return the sample size and the required number of available clients.

aggregate_evaluate(server_round: int, results: list[tuple[ClientProxy, EvaluateRes]], failures: list[tuple[ClientProxy, EvaluateRes] | BaseException]) tuple[float | None, dict[str, bool | bytes | float | int | str]]

Aggregate evaluation losses using weighted average.

aggregate_fit(server_round: int, results: list[tuple[ClientProxy, FitRes]], failures: list[tuple[ClientProxy, FitRes] | BaseException]) tuple[Parameters | None, dict[str, bool | bytes | float | int | str]][소스]

Aggregate fit results using weighted average.

configure_evaluate(server_round: int, parameters: Parameters, client_manager: ClientManager) list[tuple[ClientProxy, EvaluateIns]]

Configure the next round of evaluation.

configure_fit(server_round: int, parameters: Parameters, client_manager: ClientManager) list[tuple[ClientProxy, FitIns]]

Configure the next round of training.

evaluate(server_round: int, parameters: Parameters) tuple[float, dict[str, bool | bytes | float | int | str]] | None

Evaluate model parameters using an evaluation function.

initialize_parameters(client_manager: ClientManager) Parameters | None

Initialize global model parameters.

num_evaluation_clients(num_available_clients: int) tuple[int, int]

Use a fraction of available clients for evaluation.

num_fit_clients(num_available_clients: int) tuple[int, int]

Return the sample size and the required number of available clients.