DifferentialPrivacyServerSideAdaptiveClipping#

class DifferentialPrivacyServerSideAdaptiveClipping(strategy: Strategy, noise_multiplier: float, num_sampled_clients: int, initial_clipping_norm: float = 0.1, target_clipped_quantile: float = 0.5, clip_norm_lr: float = 0.2, clipped_count_stddev: float | None = None)[소스]#

기반 클래스: Strategy

Strategy wrapper for central DP with server-side adaptive clipping.

매개변수:
  • strategy (Strategy) – The strategy to which DP functionalities will be added by this wrapper.

  • noise_multiplier (float) – The noise multiplier for the Gaussian mechanism for model updates.

  • num_sampled_clients (int) – The number of clients that are sampled on each round.

  • initial_clipping_norm (float) – The initial value of clipping norm. Defaults to 0.1. Andrew et al. recommends to set to 0.1.

  • target_clipped_quantile (float) – The desired quantile of updates which should be clipped. Defaults to 0.5.

  • clip_norm_lr (float) – The learning rate for the clipping norm adaptation. Defaults to 0.2. Andrew et al. recommends to set to 0.2.

  • clipped_count_stddev (float) – The standard deviation of the noise added to the count of updates below the estimate. Andrew et al. recommends to set to expected_num_records/20

예제

Create a strategy:

>>> strategy = fl.server.strategy.FedAvg( ... )

Wrap the strategy with the DifferentialPrivacyServerSideAdaptiveClipping wrapper

>>> dp_strategy = DifferentialPrivacyServerSideAdaptiveClipping(
>>>     strategy, cfg.noise_multiplier, cfg.num_sampled_clients, ...
>>> )

메소드

aggregate_evaluate(server_round, results, ...)

Aggregate evaluation losses using the given strategy.

aggregate_fit(server_round, results, failures)

Aggregate training results and update clip norms.

configure_evaluate(server_round, parameters, ...)

Configure the next round of evaluation.

configure_fit(server_round, parameters, ...)

Configure the next round of training.

evaluate(server_round, parameters)

Evaluate model parameters using an evaluation function from the strategy.

initialize_parameters(client_manager)

Initialize global model parameters using given strategy.

aggregate_evaluate(server_round: int, results: list[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.EvaluateRes]], failures: list[Union[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.EvaluateRes], BaseException]]) tuple[Optional[float], dict[str, Union[bool, bytes, float, int, str]]][소스]#

Aggregate evaluation losses using the given strategy.

aggregate_fit(server_round: int, results: list[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.FitRes]], failures: list[Union[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.FitRes], BaseException]]) tuple[Optional[flwr.common.typing.Parameters], dict[str, Union[bool, bytes, float, int, str]]][소스]#

Aggregate training results and update clip norms.

configure_evaluate(server_round: int, parameters: Parameters, client_manager: ClientManager) list[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.EvaluateIns]][소스]#

Configure the next round of evaluation.

configure_fit(server_round: int, parameters: Parameters, client_manager: ClientManager) list[tuple[flwr.server.client_proxy.ClientProxy, flwr.common.typing.FitIns]][소스]#

Configure the next round of training.

evaluate(server_round: int, parameters: Parameters) tuple[float, dict[str, Union[bool, bytes, float, int, str]]] | None[소스]#

Evaluate model parameters using an evaluation function from the strategy.

initialize_parameters(client_manager: ClientManager) Parameters | None[소스]#

Initialize global model parameters using given strategy.