Use strategies¶
Flower allows full customization of the learning process through the Strategy
abstraction. A number of built-in strategies are provided in the core framework.
Il y a trois façons de personnaliser la manière dont Flower orchestre le processus d’apprentissage du côté du serveur :
Use an existing strategy, for example,
FedAvg
Personnalise une stratégie existante avec des fonctions de rappel
Mets en place une nouvelle stratégie
Utilise une stratégie existante¶
Flower intègre un certain nombre de stratégies d’apprentissage fédéré populaires. Une stratégie intégrée peut être instanciée comme suit :
import flwr as fl
strategy = fl.server.strategy.FedAvg()
fl.server.start_server(config=fl.server.ServerConfig(num_rounds=3), strategy=strategy)
This creates a strategy with all parameters left at their default values and passes it
to the start_server
function. It is usually recommended to adjust a few parameters
during instantiation:
import flwr as fl
strategy = fl.server.strategy.FedAvg(
fraction_fit=0.1, # Sample 10% of available clients for the next round
min_fit_clients=10, # Minimum number of clients to be sampled for the next round
min_available_clients=80, # Minimum number of clients that need to be connected to the server before a training round can start
)
fl.server.start_server(config=fl.server.ServerConfig(num_rounds=3), strategy=strategy)
Personnalise une stratégie existante avec des fonctions de rappel¶
Les stratégies existantes offrent plusieurs façons de personnaliser leur comportement. Les fonctions de rappel permettent aux stratégies d’appeler le code fourni par l’utilisateur pendant l’exécution.
Configurer l’adaptation et l’évaluation du client¶
The server can pass new configuration values to the client each round by providing a
function to on_fit_config_fn
. The provided function will be called by the strategy
and must return a dictionary of configuration key values pairs that will be sent to the
client. It must return a dictionary of arbitrary configuration values client.fit
and
client.evaluate
functions during each round of federated learning.
import flwr as fl
def get_on_fit_config_fn() -> Callable[[int], Dict[str, str]]:
"""Return a function which returns training configurations."""
def fit_config(server_round: int) -> Dict[str, str]:
"""Return a configuration with static batch size and (local) epochs."""
config = {
"learning_rate": str(0.001),
"batch_size": str(32),
}
return config
return fit_config
strategy = fl.server.strategy.FedAvg(
fraction_fit=0.1,
min_fit_clients=10,
min_available_clients=80,
on_fit_config_fn=get_on_fit_config_fn(),
)
fl.server.start_server(config=fl.server.ServerConfig(num_rounds=3), strategy=strategy)
The on_fit_config_fn
can be used to pass arbitrary configuration values from server
to client, and potentially change these values each round, for example, to adjust the
learning rate. The client will receive the dictionary returned by the
on_fit_config_fn
in its own client.fit()
function.
Similar to on_fit_config_fn
, there is also on_evaluate_config_fn
to customize
the configuration sent to client.evaluate()
Configuration de l’évaluation côté serveur¶
Server-side evaluation can be enabled by passing an evaluation function to
evaluate_fn
.
Mets en place une nouvelle stratégie¶
Writing a fully custom strategy is a bit more involved, but it provides the most flexibility. Read the Implementing Strategies guide to learn more.