flwr.client.mod.localdp_mod의 소스 코드

# Copyright 2024 Flower Labs GmbH. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Local DP modifier."""


from logging import INFO

import numpy as np

from flwr.client.typing import ClientAppCallable
from flwr.common import ndarrays_to_parameters, parameters_to_ndarrays
from flwr.common import recordset_compat as compat
from flwr.common.constant import MessageType
from flwr.common.context import Context
from flwr.common.differential_privacy import (
    add_localdp_gaussian_noise_to_params,
    compute_clip_model_update,
)
from flwr.common.logger import log
from flwr.common.message import Message


[문서] class LocalDpMod: """Modifier for local differential privacy. This mod clips the client model updates and adds noise to the params before sending them to the server. It operates on messages of type `MessageType.TRAIN`. Parameters ---------- clipping_norm : float The value of the clipping norm. sensitivity : float The sensitivity of the client model. epsilon : float The privacy budget. Smaller value of epsilon indicates a higher level of privacy protection. delta : float The failure probability. The probability that the privacy mechanism fails to provide the desired level of privacy. A smaller value of delta indicates a stricter privacy guarantee. Examples -------- Create an instance of the local DP mod and add it to the client-side mods: >>> local_dp_mod = LocalDpMod( ... ) >>> app = fl.client.ClientApp( >>> client_fn=client_fn, mods=[local_dp_mod] >>> ) """ def __init__( self, clipping_norm: float, sensitivity: float, epsilon: float, delta: float ) -> None: if clipping_norm <= 0: raise ValueError("The clipping norm should be a positive value.") if sensitivity < 0: raise ValueError("The sensitivity should be a non-negative value.") if epsilon < 0: raise ValueError("Epsilon should be a non-negative value.") if delta < 0: raise ValueError("Delta should be a non-negative value.") self.clipping_norm = clipping_norm self.sensitivity = sensitivity self.epsilon = epsilon self.delta = delta def __call__( self, msg: Message, ctxt: Context, call_next: ClientAppCallable ) -> Message: """Perform local DP on the client model parameters. Parameters ---------- msg : Message The message received from the server. ctxt : Context The context of the client. call_next : ClientAppCallable The callable to call the next middleware in the chain. Returns ------- Message The modified message to be sent back to the server. """ if msg.metadata.message_type != MessageType.TRAIN: return call_next(msg, ctxt) fit_ins = compat.recordset_to_fitins(msg.content, keep_input=True) server_to_client_params = parameters_to_ndarrays(fit_ins.parameters) # Call inner app out_msg = call_next(msg, ctxt) # Check if the msg has error if out_msg.has_error(): return out_msg fit_res = compat.recordset_to_fitres(out_msg.content, keep_input=True) client_to_server_params = parameters_to_ndarrays(fit_res.parameters) # Clip the client update compute_clip_model_update( client_to_server_params, server_to_client_params, self.clipping_norm, ) log( INFO, "LocalDpMod: parameters are clipped by value: %.4f.", self.clipping_norm, ) fit_res.parameters = ndarrays_to_parameters(client_to_server_params) # Add noise to model params add_localdp_gaussian_noise_to_params( fit_res.parameters, self.sensitivity, self.epsilon, self.delta ) noise_value_sd = ( self.sensitivity * np.sqrt(2 * np.log(1.25 / self.delta)) / self.epsilon ) log( INFO, "LocalDpMod: local DP noise with %.4f stedv added to parameters", noise_value_sd, ) out_msg.content = compat.fitres_to_recordset(fit_res, keep_input=True) return out_msg