# Copyright 2024 Flower Labs GmbH. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.# =============================================================================="""Local DP modifier."""fromloggingimportINFOimportnumpyasnpfromflwr.client.typingimportClientAppCallablefromflwr.commonimportndarrays_to_parameters,parameters_to_ndarraysfromflwr.commonimportrecordset_compatascompatfromflwr.common.constantimportMessageTypefromflwr.common.contextimportContextfromflwr.common.differential_privacyimport(add_localdp_gaussian_noise_to_params,compute_clip_model_update,)fromflwr.common.loggerimportlogfromflwr.common.messageimportMessage
[docs]classLocalDpMod:"""Modifier for local differential privacy. This mod clips the client model updates and adds noise to the params before sending them to the server. It operates on messages of type `MessageType.TRAIN`. Parameters ---------- clipping_norm : float The value of the clipping norm. sensitivity : float The sensitivity of the client model. epsilon : float The privacy budget. Smaller value of epsilon indicates a higher level of privacy protection. delta : float The failure probability. The probability that the privacy mechanism fails to provide the desired level of privacy. A smaller value of delta indicates a stricter privacy guarantee. Examples -------- Create an instance of the local DP mod and add it to the client-side mods: >>> local_dp_mod = LocalDpMod( ... ) >>> app = fl.client.ClientApp( >>> client_fn=client_fn, mods=[local_dp_mod] >>> ) """def__init__(self,clipping_norm:float,sensitivity:float,epsilon:float,delta:float)->None:ifclipping_norm<=0:raiseValueError("The clipping norm should be a positive value.")ifsensitivity<0:raiseValueError("The sensitivity should be a non-negative value.")ifepsilon<0:raiseValueError("Epsilon should be a non-negative value.")ifdelta<0:raiseValueError("Delta should be a non-negative value.")self.clipping_norm=clipping_normself.sensitivity=sensitivityself.epsilon=epsilonself.delta=deltadef__call__(self,msg:Message,ctxt:Context,call_next:ClientAppCallable)->Message:"""Perform local DP on the client model parameters. Parameters ---------- msg : Message The message received from the server. ctxt : Context The context of the client. call_next : ClientAppCallable The callable to call the next middleware in the chain. Returns ------- Message The modified message to be sent back to the server. """ifmsg.metadata.message_type!=MessageType.TRAIN:returncall_next(msg,ctxt)fit_ins=compat.recordset_to_fitins(msg.content,keep_input=True)server_to_client_params=parameters_to_ndarrays(fit_ins.parameters)# Call inner appout_msg=call_next(msg,ctxt)# Check if the msg has errorifout_msg.has_error():returnout_msgfit_res=compat.recordset_to_fitres(out_msg.content,keep_input=True)client_to_server_params=parameters_to_ndarrays(fit_res.parameters)# Clip the client updatecompute_clip_model_update(client_to_server_params,server_to_client_params,self.clipping_norm,)log(INFO,"LocalDpMod: parameters are clipped by value: %.4f.",self.clipping_norm,)fit_res.parameters=ndarrays_to_parameters(client_to_server_params)# Add noise to model paramsfit_res.parameters=add_localdp_gaussian_noise_to_params(fit_res.parameters,self.sensitivity,self.epsilon,self.delta)noise_value_sd=(self.sensitivity*np.sqrt(2*np.log(1.25/self.delta))/self.epsilon)log(INFO,"LocalDpMod: local DP noise with %.4f stedv added to parameters",noise_value_sd,)out_msg.content=compat.fitres_to_recordset(fit_res,keep_input=True)returnout_msg