# Copyright 2024 Flower Labs GmbH. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Central differential privacy with adaptive clipping.
Paper (Andrew et al.): https://arxiv.org/abs/1905.03871
"""
import math
from logging import INFO, WARNING
from typing import Optional, Union
import numpy as np
from flwr.common import (
EvaluateIns,
EvaluateRes,
FitIns,
FitRes,
NDArrays,
Parameters,
Scalar,
ndarrays_to_parameters,
parameters_to_ndarrays,
)
from flwr.common.differential_privacy import (
adaptive_clip_inputs_inplace,
add_gaussian_noise_to_params,
compute_adaptive_noise_params,
compute_stdv,
)
from flwr.common.differential_privacy_constants import (
CLIENTS_DISCREPANCY_WARNING,
KEY_CLIPPING_NORM,
KEY_NORM_BIT,
)
from flwr.common.logger import log
from flwr.server.client_manager import ClientManager
from flwr.server.client_proxy import ClientProxy
from flwr.server.strategy.strategy import Strategy
[문서]
class DifferentialPrivacyServerSideAdaptiveClipping(Strategy):
"""Strategy wrapper for central DP with server-side adaptive clipping.
Parameters
----------
strategy: Strategy
The strategy to which DP functionalities will be added by this wrapper.
noise_multiplier : float
The noise multiplier for the Gaussian mechanism for model updates.
num_sampled_clients : int
The number of clients that are sampled on each round.
initial_clipping_norm : float
The initial value of clipping norm. Defaults to 0.1.
Andrew et al. recommends to set to 0.1.
target_clipped_quantile : float
The desired quantile of updates which should be clipped. Defaults to 0.5.
clip_norm_lr : float
The learning rate for the clipping norm adaptation. Defaults to 0.2.
Andrew et al. recommends to set to 0.2.
clipped_count_stddev : float
The standard deviation of the noise added to the count of updates below the estimate.
Andrew et al. recommends to set to `expected_num_records/20`
Examples
--------
Create a strategy:
>>> strategy = fl.server.strategy.FedAvg( ... )
Wrap the strategy with the DifferentialPrivacyServerSideAdaptiveClipping wrapper
>>> dp_strategy = DifferentialPrivacyServerSideAdaptiveClipping(
>>> strategy, cfg.noise_multiplier, cfg.num_sampled_clients, ...
>>> )
"""
# pylint: disable=too-many-arguments,too-many-instance-attributes,too-many-positional-arguments
def __init__(
self,
strategy: Strategy,
noise_multiplier: float,
num_sampled_clients: int,
initial_clipping_norm: float = 0.1,
target_clipped_quantile: float = 0.5,
clip_norm_lr: float = 0.2,
clipped_count_stddev: Optional[float] = None,
) -> None:
super().__init__()
if strategy is None:
raise ValueError("The passed strategy is None.")
if noise_multiplier < 0:
raise ValueError("The noise multiplier should be a non-negative value.")
if num_sampled_clients <= 0:
raise ValueError(
"The number of sampled clients should be a positive value."
)
if initial_clipping_norm <= 0:
raise ValueError("The initial clipping norm should be a positive value.")
if not 0 <= target_clipped_quantile <= 1:
raise ValueError(
"The target clipped quantile must be between 0 and 1 (inclusive)."
)
if clip_norm_lr <= 0:
raise ValueError("The learning rate must be positive.")
if clipped_count_stddev is not None:
if clipped_count_stddev < 0:
raise ValueError("The `clipped_count_stddev` must be non-negative.")
self.strategy = strategy
self.num_sampled_clients = num_sampled_clients
self.clipping_norm = initial_clipping_norm
self.target_clipped_quantile = target_clipped_quantile
self.clip_norm_lr = clip_norm_lr
(
self.clipped_count_stddev,
self.noise_multiplier,
) = compute_adaptive_noise_params(
noise_multiplier,
num_sampled_clients,
clipped_count_stddev,
)
self.current_round_params: NDArrays = []
def __repr__(self) -> str:
"""Compute a string representation of the strategy."""
rep = "Differential Privacy Strategy Wrapper (Server-Side Adaptive Clipping)"
return rep
[문서]
def initialize_parameters(
self, client_manager: ClientManager
) -> Optional[Parameters]:
"""Initialize global model parameters using given strategy."""
return self.strategy.initialize_parameters(client_manager)
[문서]
def aggregate_fit(
self,
server_round: int,
results: list[tuple[ClientProxy, FitRes]],
failures: list[Union[tuple[ClientProxy, FitRes], BaseException]],
) -> tuple[Optional[Parameters], dict[str, Scalar]]:
"""Aggregate training results and update clip norms."""
if failures:
return None, {}
if len(results) != self.num_sampled_clients:
log(
WARNING,
CLIENTS_DISCREPANCY_WARNING,
len(results),
self.num_sampled_clients,
)
norm_bit_set_count = 0
for _, res in results:
param = parameters_to_ndarrays(res.parameters)
# Compute and clip update
model_update = [
np.subtract(x, y) for (x, y) in zip(param, self.current_round_params)
]
norm_bit = adaptive_clip_inputs_inplace(model_update, self.clipping_norm)
norm_bit_set_count += norm_bit
log(
INFO,
"aggregate_fit: parameters are clipped by value: %.4f.",
self.clipping_norm,
)
for i, _ in enumerate(self.current_round_params):
param[i] = self.current_round_params[i] + model_update[i]
# Convert back to parameters
res.parameters = ndarrays_to_parameters(param)
# Noising the count
noised_norm_bit_set_count = float(
np.random.normal(norm_bit_set_count, self.clipped_count_stddev)
)
noised_norm_bit_set_fraction = noised_norm_bit_set_count / len(results)
# Geometric update
self.clipping_norm *= math.exp(
-self.clip_norm_lr
* (noised_norm_bit_set_fraction - self.target_clipped_quantile)
)
aggregated_params, metrics = self.strategy.aggregate_fit(
server_round, results, failures
)
# Add Gaussian noise to the aggregated parameters
if aggregated_params:
aggregated_params = add_gaussian_noise_to_params(
aggregated_params,
self.noise_multiplier,
self.clipping_norm,
self.num_sampled_clients,
)
log(
INFO,
"aggregate_fit: central DP noise with %.4f stdev added",
compute_stdv(
self.noise_multiplier, self.clipping_norm, self.num_sampled_clients
),
)
return aggregated_params, metrics
[문서]
def aggregate_evaluate(
self,
server_round: int,
results: list[tuple[ClientProxy, EvaluateRes]],
failures: list[Union[tuple[ClientProxy, EvaluateRes], BaseException]],
) -> tuple[Optional[float], dict[str, Scalar]]:
"""Aggregate evaluation losses using the given strategy."""
return self.strategy.aggregate_evaluate(server_round, results, failures)
[문서]
def evaluate(
self, server_round: int, parameters: Parameters
) -> Optional[tuple[float, dict[str, Scalar]]]:
"""Evaluate model parameters using an evaluation function from the strategy."""
return self.strategy.evaluate(server_round, parameters)
[문서]
class DifferentialPrivacyClientSideAdaptiveClipping(Strategy):
"""Strategy wrapper for central DP with client-side adaptive clipping.
Use `adaptiveclipping_mod` modifier at the client side.
In comparison to `DifferentialPrivacyServerSideAdaptiveClipping`,
which performs clipping on the server-side, `DifferentialPrivacyClientSideAdaptiveClipping`
expects clipping to happen on the client-side, usually by using the built-in
`adaptiveclipping_mod`.
Parameters
----------
strategy : Strategy
The strategy to which DP functionalities will be added by this wrapper.
noise_multiplier : float
The noise multiplier for the Gaussian mechanism for model updates.
num_sampled_clients : int
The number of clients that are sampled on each round.
initial_clipping_norm : float
The initial value of clipping norm. Defaults to 0.1.
Andrew et al. recommends to set to 0.1.
target_clipped_quantile : float
The desired quantile of updates which should be clipped. Defaults to 0.5.
clip_norm_lr : float
The learning rate for the clipping norm adaptation. Defaults to 0.2.
Andrew et al. recommends to set to 0.2.
clipped_count_stddev : float
The stddev of the noise added to the count of updates currently below the estimate.
Andrew et al. recommends to set to `expected_num_records/20`
Examples
--------
Create a strategy:
>>> strategy = fl.server.strategy.FedAvg(...)
Wrap the strategy with the `DifferentialPrivacyClientSideAdaptiveClipping` wrapper:
>>> dp_strategy = DifferentialPrivacyClientSideAdaptiveClipping(
>>> strategy, cfg.noise_multiplier, cfg.num_sampled_clients
>>> )
On the client, add the `adaptiveclipping_mod` to the client-side mods:
>>> app = fl.client.ClientApp(
>>> client_fn=client_fn, mods=[adaptiveclipping_mod]
>>> )
"""
# pylint: disable=too-many-arguments,too-many-instance-attributes,too-many-positional-arguments
def __init__(
self,
strategy: Strategy,
noise_multiplier: float,
num_sampled_clients: int,
initial_clipping_norm: float = 0.1,
target_clipped_quantile: float = 0.5,
clip_norm_lr: float = 0.2,
clipped_count_stddev: Optional[float] = None,
) -> None:
super().__init__()
if strategy is None:
raise ValueError("The passed strategy is None.")
if noise_multiplier < 0:
raise ValueError("The noise multiplier should be a non-negative value.")
if num_sampled_clients <= 0:
raise ValueError(
"The number of sampled clients should be a positive value."
)
if initial_clipping_norm <= 0:
raise ValueError("The initial clipping norm should be a positive value.")
if not 0 <= target_clipped_quantile <= 1:
raise ValueError(
"The target clipped quantile must be between 0 and 1 (inclusive)."
)
if clip_norm_lr <= 0:
raise ValueError("The learning rate must be positive.")
if clipped_count_stddev is not None and clipped_count_stddev < 0:
raise ValueError("The `clipped_count_stddev` must be non-negative.")
self.strategy = strategy
self.num_sampled_clients = num_sampled_clients
self.clipping_norm = initial_clipping_norm
self.target_clipped_quantile = target_clipped_quantile
self.clip_norm_lr = clip_norm_lr
(
self.clipped_count_stddev,
self.noise_multiplier,
) = compute_adaptive_noise_params(
noise_multiplier,
num_sampled_clients,
clipped_count_stddev,
)
def __repr__(self) -> str:
"""Compute a string representation of the strategy."""
rep = "Differential Privacy Strategy Wrapper (Client-Side Adaptive Clipping)"
return rep
[문서]
def initialize_parameters(
self, client_manager: ClientManager
) -> Optional[Parameters]:
"""Initialize global model parameters using given strategy."""
return self.strategy.initialize_parameters(client_manager)
[문서]
def aggregate_fit(
self,
server_round: int,
results: list[tuple[ClientProxy, FitRes]],
failures: list[Union[tuple[ClientProxy, FitRes], BaseException]],
) -> tuple[Optional[Parameters], dict[str, Scalar]]:
"""Aggregate training results and update clip norms."""
if failures:
return None, {}
if len(results) != self.num_sampled_clients:
log(
WARNING,
CLIENTS_DISCREPANCY_WARNING,
len(results),
self.num_sampled_clients,
)
aggregated_params, metrics = self.strategy.aggregate_fit(
server_round, results, failures
)
self._update_clip_norm(results)
# Add Gaussian noise to the aggregated parameters
if aggregated_params:
aggregated_params = add_gaussian_noise_to_params(
aggregated_params,
self.noise_multiplier,
self.clipping_norm,
self.num_sampled_clients,
)
log(
INFO,
"aggregate_fit: central DP noise with %.4f stdev added",
compute_stdv(
self.noise_multiplier, self.clipping_norm, self.num_sampled_clients
),
)
return aggregated_params, metrics
def _update_clip_norm(self, results: list[tuple[ClientProxy, FitRes]]) -> None:
# Calculate the number of clients which set the norm indicator bit
norm_bit_set_count = 0
for client_proxy, fit_res in results:
if KEY_NORM_BIT not in fit_res.metrics:
raise KeyError(
f"{KEY_NORM_BIT} not returned by client with id {client_proxy.cid}."
)
if fit_res.metrics[KEY_NORM_BIT]:
norm_bit_set_count += 1
# Add noise to the count
noised_norm_bit_set_count = float(
np.random.normal(norm_bit_set_count, self.clipped_count_stddev)
)
noised_norm_bit_set_fraction = noised_norm_bit_set_count / len(results)
# Geometric update
self.clipping_norm *= math.exp(
-self.clip_norm_lr
* (noised_norm_bit_set_fraction - self.target_clipped_quantile)
)
[문서]
def aggregate_evaluate(
self,
server_round: int,
results: list[tuple[ClientProxy, EvaluateRes]],
failures: list[Union[tuple[ClientProxy, EvaluateRes], BaseException]],
) -> tuple[Optional[float], dict[str, Scalar]]:
"""Aggregate evaluation losses using the given strategy."""
return self.strategy.aggregate_evaluate(server_round, results, failures)
[문서]
def evaluate(
self, server_round: int, parameters: Parameters
) -> Optional[tuple[float, dict[str, Scalar]]]:
"""Evaluate model parameters using an evaluation function from the strategy."""
return self.strategy.evaluate(server_round, parameters)