flwr.server.strategy.dpfedavg_fixed의 소스 코드

# Copyright 2022 Flower Labs GmbH. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""DP-FedAvg [McMahan et al., 2018] strategy.

Paper: arxiv.org/pdf/1710.06963.pdf
"""


from typing import Optional, Union

from flwr.common import EvaluateIns, EvaluateRes, FitIns, FitRes, Parameters, Scalar
from flwr.common.dp import add_gaussian_noise
from flwr.common.logger import warn_deprecated_feature
from flwr.common.parameter import ndarrays_to_parameters, parameters_to_ndarrays
from flwr.server.client_manager import ClientManager
from flwr.server.client_proxy import ClientProxy
from flwr.server.strategy.strategy import Strategy


[문서] class DPFedAvgFixed(Strategy): """Wrapper for configuring a Strategy for DP with Fixed Clipping. Warning ------- This class is deprecated and will be removed in a future release. """ # pylint: disable=too-many-arguments,too-many-instance-attributes,too-many-positional-arguments def __init__( self, strategy: Strategy, num_sampled_clients: int, clip_norm: float, noise_multiplier: float = 1, server_side_noising: bool = True, ) -> None: warn_deprecated_feature("`DPFedAvgFixed` wrapper") super().__init__() self.strategy = strategy # Doing fixed-size subsampling as in https://arxiv.org/abs/1905.03871. self.num_sampled_clients = num_sampled_clients if clip_norm <= 0: raise ValueError("The clipping threshold should be a positive value.") self.clip_norm = clip_norm if noise_multiplier < 0: raise ValueError("The noise multiplier should be a non-negative value.") self.noise_multiplier = noise_multiplier self.server_side_noising = server_side_noising def __repr__(self) -> str: """Compute a string representation of the strategy.""" rep = "Strategy with DP with Fixed Clipping enabled." return rep def _calc_client_noise_stddev(self) -> float: return float( self.noise_multiplier * self.clip_norm / (self.num_sampled_clients ** (0.5)) )
[문서] def initialize_parameters( self, client_manager: ClientManager ) -> Optional[Parameters]: """Initialize global model parameters using given strategy.""" return self.strategy.initialize_parameters(client_manager)
[문서] def configure_fit( self, server_round: int, parameters: Parameters, client_manager: ClientManager ) -> list[tuple[ClientProxy, FitIns]]: """Configure the next round of training incorporating Differential Privacy (DP). Configuration of the next training round includes information related to DP, such as clip norm and noise stddev. Parameters ---------- server_round : int The current round of federated learning. parameters : Parameters The current (global) model parameters. client_manager : ClientManager The client manager which holds all currently connected clients. Returns ------- fit_configuration : List[Tuple[ClientProxy, FitIns]] A list of tuples. Each tuple in the list identifies a `ClientProxy` and the `FitIns` for this particular `ClientProxy`. If a particular `ClientProxy` is not included in this list, it means that this `ClientProxy` will not participate in the next round of federated learning. """ additional_config = {"dpfedavg_clip_norm": self.clip_norm} if not self.server_side_noising: additional_config["dpfedavg_noise_stddev"] = ( self._calc_client_noise_stddev() ) client_instructions = self.strategy.configure_fit( server_round, parameters, client_manager ) for _, fit_ins in client_instructions: fit_ins.config.update(additional_config) return client_instructions
[문서] def configure_evaluate( self, server_round: int, parameters: Parameters, client_manager: ClientManager ) -> list[tuple[ClientProxy, EvaluateIns]]: """Configure the next round of evaluation using the specified strategy. Parameters ---------- server_round : int The current round of federated learning. parameters : Parameters The current (global) model parameters. client_manager : ClientManager The client manager which holds all currently connected clients. Returns ------- evaluate_configuration : List[Tuple[ClientProxy, EvaluateIns]] A list of tuples. Each tuple in the list identifies a `ClientProxy` and the `EvaluateIns` for this particular `ClientProxy`. If a particular `ClientProxy` is not included in this list, it means that this `ClientProxy` will not participate in the next round of federated evaluation. """ return self.strategy.configure_evaluate( server_round, parameters, client_manager )
[문서] def aggregate_fit( self, server_round: int, results: list[tuple[ClientProxy, FitRes]], failures: list[Union[tuple[ClientProxy, FitRes], BaseException]], ) -> tuple[Optional[Parameters], dict[str, Scalar]]: """Aggregate training results using unweighted aggregation.""" if failures: return None, {} # Forcing unweighted aggregation, as in https://arxiv.org/abs/1905.03871. for _, fit_res in results: fit_res.num_examples = 1 fit_res.parameters = ndarrays_to_parameters( add_gaussian_noise( parameters_to_ndarrays(fit_res.parameters), self._calc_client_noise_stddev(), ) ) return self.strategy.aggregate_fit(server_round, results, failures)
[문서] def aggregate_evaluate( self, server_round: int, results: list[tuple[ClientProxy, EvaluateRes]], failures: list[Union[tuple[ClientProxy, EvaluateRes], BaseException]], ) -> tuple[Optional[float], dict[str, Scalar]]: """Aggregate evaluation losses using the given strategy.""" return self.strategy.aggregate_evaluate(server_round, results, failures)
[문서] def evaluate( self, server_round: int, parameters: Parameters ) -> Optional[tuple[float, dict[str, Scalar]]]: """Evaluate model parameters using an evaluation function from the strategy.""" return self.strategy.evaluate(server_round, parameters)