Federated Learning with PyTorch Lightning and Flower (Quickstart Example)ΒΆ
This introductory example to Flower uses PyTorch Lightning, but deep knowledge of PyTorch Lightning is not necessarily required to run the example. However, it will help you understand how to adapt Flower to your use case. Running this example in itself is quite easy. This example uses Flower Datasets to download, partition and preprocess the MNIST dataset. The model being federated is a lightweight AutoEncoder as presented in Lightning in 15 minutes tutorial.
Project SetupΒΆ
Start by cloning the example project. We prepared a single-line command that you can copy into your shell which will checkout the example for you:
git clone --depth=1 https://github.com/adap/flower.git _tmp \
&& mv _tmp/examples/quickstart-pytorch-lightning . \
&& rm -rf _tmp && cd quickstart-pytorch-lightning
This will create a new directory called quickstart-pytorch-lightning
containing the following files:
quickstart-pytorch-lightning
βββ pytorchlightning_example
β βββ __init__.py
β βββ client_app.py # Defines your ClientApp
β βββ server_app.py # Defines your ServerApp
β βββ task.py # Defines your model, training and data loading
βββ pyproject.toml # Project metadata like dependencies and configs
βββ README.md
Install dependencies and projectΒΆ
Install the dependencies defined in pyproject.toml
as well as the pytorchlightning_example
package.
pip install -e .
Run the ExampleΒΆ
You can run your Flower project in both simulation and deployment mode without making changes to the code. If you are starting with Flower, we recommend you using the simulation mode as it requires fewer components to be launched manually. By default, flwr run
will make use of the Simulation Engine.
Run with the Simulation EngineΒΆ
[!NOTE] Check the Simulation Engine documentation to learn more about Flower simulations and how to optimize them.
flwr run .
You can also override some of the settings for your ClientApp
and ServerApp
defined in pyproject.toml
. For example:
flwr run . --run-config "num-server-rounds=5 max-epochs=2"
Run with the Deployment EngineΒΆ
Follow this how-to guide to run the same app in this example but with Flowerβs Deployment Engine. After that, you might be intersted in setting up secure TLS-enabled communications and SuperNode authentication in your federation.
If you are already familiar with how the Deployment Engine works, you may want to learn how to run it using Docker. Check out the Flower with Docker documentation.