Source code for flwr.server.history

# Copyright 2020 Flower Labs GmbH. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Training history."""


import pprint
from functools import reduce

from flwr.common.typing import Scalar


[docs] class History: """History class for training and/or evaluation metrics collection.""" def __init__(self) -> None: self.losses_distributed: list[tuple[int, float]] = [] self.losses_centralized: list[tuple[int, float]] = [] self.metrics_distributed_fit: dict[str, list[tuple[int, Scalar]]] = {} self.metrics_distributed: dict[str, list[tuple[int, Scalar]]] = {} self.metrics_centralized: dict[str, list[tuple[int, Scalar]]] = {}
[docs] def add_loss_distributed(self, server_round: int, loss: float) -> None: """Add one loss entry (from distributed evaluation).""" self.losses_distributed.append((server_round, loss))
[docs] def add_loss_centralized(self, server_round: int, loss: float) -> None: """Add one loss entry (from centralized evaluation).""" self.losses_centralized.append((server_round, loss))
[docs] def add_metrics_distributed_fit( self, server_round: int, metrics: dict[str, Scalar] ) -> None: """Add metrics entries (from distributed fit).""" for key in metrics: # if not (isinstance(metrics[key], float) or isinstance(metrics[key], int)): # continue # ignore non-numeric key/value pairs if key not in self.metrics_distributed_fit: self.metrics_distributed_fit[key] = [] self.metrics_distributed_fit[key].append((server_round, metrics[key]))
[docs] def add_metrics_distributed( self, server_round: int, metrics: dict[str, Scalar] ) -> None: """Add metrics entries (from distributed evaluation).""" for key in metrics: # if not (isinstance(metrics[key], float) or isinstance(metrics[key], int)): # continue # ignore non-numeric key/value pairs if key not in self.metrics_distributed: self.metrics_distributed[key] = [] self.metrics_distributed[key].append((server_round, metrics[key]))
[docs] def add_metrics_centralized( self, server_round: int, metrics: dict[str, Scalar] ) -> None: """Add metrics entries (from centralized evaluation).""" for key in metrics: # if not (isinstance(metrics[key], float) or isinstance(metrics[key], int)): # continue # ignore non-numeric key/value pairs if key not in self.metrics_centralized: self.metrics_centralized[key] = [] self.metrics_centralized[key].append((server_round, metrics[key]))
def __repr__(self) -> str: """Create a representation of History. The representation consists of the following data (for each round) if present: * distributed loss. * centralized loss. * distributed training metrics. * distributed evaluation metrics. * centralized metrics. Returns ------- representation : str The string representation of the history object. """ rep = "" if self.losses_distributed: rep += "History (loss, distributed):\n" + reduce( lambda a, b: a + b, [ f"\tround {server_round}: {loss}\n" for server_round, loss in self.losses_distributed ], ) if self.losses_centralized: rep += "History (loss, centralized):\n" + reduce( lambda a, b: a + b, [ f"\tround {server_round}: {loss}\n" for server_round, loss in self.losses_centralized ], ) if self.metrics_distributed_fit: rep += ( "History (metrics, distributed, fit):\n" + pprint.pformat(self.metrics_distributed_fit) + "\n" ) if self.metrics_distributed: rep += ( "History (metrics, distributed, evaluate):\n" + pprint.pformat(self.metrics_distributed) + "\n" ) if self.metrics_centralized: rep += "History (metrics, centralized):\n" + pprint.pformat( self.metrics_centralized ) return rep