Save and Load Model Checkpoints¶
Flower 不会在服务器端自动保存模型更新。本指南将介绍在 Flower 中保存(和加载)模型检查点的步骤。
Model Checkpointing¶
Model updates can be persisted on the server-side by customizing Strategy
methods.
Implementing custom strategies is always an option, but for many cases it may be more
convenient to simply customize an existing strategy. The following code example defines
a new SaveModelStrategy
which customized the existing built-in FedAvg
strategy.
In particular, it customizes aggregate_fit
by calling aggregate_fit
in the base
class (FedAvg
). It then continues to save returned (aggregated) weights before it
returns those aggregated weights to the caller (i.e., the server):
class SaveModelStrategy(fl.server.strategy.FedAvg):
def aggregate_fit(
self,
server_round: int,
results: list[tuple[fl.server.client_proxy.ClientProxy, fl.common.FitRes]],
failures: list[Union[tuple[ClientProxy, FitRes], BaseException]],
) -> tuple[Optional[Parameters], dict[str, Scalar]]:
# Call aggregate_fit from base class (FedAvg) to aggregate parameters and metrics
aggregated_parameters, aggregated_metrics = super().aggregate_fit(
server_round, results, failures
)
if aggregated_parameters is not None:
# Convert `Parameters` to `list[np.ndarray]`
aggregated_ndarrays: list[np.ndarray] = fl.common.parameters_to_ndarrays(
aggregated_parameters
)
# Save aggregated_ndarrays to disk
print(f"Saving round {server_round} aggregated_ndarrays...")
np.savez(f"round-{server_round}-weights.npz", *aggregated_ndarrays)
return aggregated_parameters, aggregated_metrics
# Create strategy and pass into ServerApp
def server_fn(context):
strategy = SaveModelStrategy(
# (same arguments as FedAvg here)
)
config = ServerConfig(num_rounds=3)
return ServerAppComponents(strategy=strategy, config=config)
app = ServerApp(server_fn=server_fn)
Save and Load PyTorch Checkpoints¶
与前面的例子类似,但多了几个步骤,我们将展示如何存储一个 PyTorch 检查点,我们将使用 torch.save
函数。首先,aggregate_fit
返回一个 Parameters
对象,它必须被转换成一个 NumPy ndarray
的列表,然后这些对象按照 OrderedDict
类结构被转换成 PyTorch state_dict 对象。
net = cifar.Net().to(DEVICE)
class SaveModelStrategy(fl.server.strategy.FedAvg):
def aggregate_fit(
self,
server_round: int,
results: list[tuple[fl.server.client_proxy.ClientProxy, fl.common.FitRes]],
failures: list[Union[tuple[ClientProxy, FitRes], BaseException]],
) -> tuple[Optional[Parameters], dict[str, Scalar]]:
"""Aggregate model weights using weighted average and store checkpoint"""
# Call aggregate_fit from base class (FedAvg) to aggregate parameters and metrics
aggregated_parameters, aggregated_metrics = super().aggregate_fit(
server_round, results, failures
)
if aggregated_parameters is not None:
print(f"Saving round {server_round} aggregated_parameters...")
# Convert `Parameters` to `list[np.ndarray]`
aggregated_ndarrays: list[np.ndarray] = fl.common.parameters_to_ndarrays(
aggregated_parameters
)
# Convert `list[np.ndarray]` to PyTorch `state_dict`
params_dict = zip(net.state_dict().keys(), aggregated_ndarrays)
state_dict = OrderedDict({k: torch.tensor(v) for k, v in params_dict})
net.load_state_dict(state_dict, strict=True)
# Save the model to disk
torch.save(net.state_dict(), f"model_round_{server_round}.pth")
return aggregated_parameters, aggregated_metrics
要加载进度,只需在代码中添加以下几行。请注意,这将遍历所有已保存的检查点,并加载最新的检查点:
list_of_files = [fname for fname in glob.glob("./model_round_*")]
latest_round_file = max(list_of_files, key=os.path.getctime)
print("Loading pre-trained model from: ", latest_round_file)
state_dict = torch.load(latest_round_file)
net.load_state_dict(state_dict)
state_dict_ndarrays = [v.cpu().numpy() for v in net.state_dict().values()]
parameters = fl.common.ndarrays_to_parameters(state_dict_ndarrays)
Return/use this object of type Parameters
wherever necessary, such as in the
initial_parameters
when defining a Strategy
.
Alternatively, we can save and load the model updates during evaluation phase by
overriding evaluate()
or aggregate_evaluate()
method of the strategy
(FedAvg
). Checkout the details in Advanced PyTorch Example and Advanced
TensorFlow Example.