联邦学习评估¶
评估联合学习系统中的模型主要有两种方法:集中(或服务器端)评估和联邦(或客户端)评估。
集中评估¶
内置策略¶
所有内置策略都通过在初始化过程中提供一个评估函数来支持集中评估。评估函数是任何可以将当前全局模型参数作为输入并返回评估结果的函数:
from flwr.common import NDArrays, Scalar
from typing import Dict, Optional, Tuple
def get_evaluate_fn(model):
"""Return an evaluation function for server-side evaluation."""
# Load data and model here to avoid the overhead of doing it in `evaluate` itself
(x_train, y_train), _ = tf.keras.datasets.cifar10.load_data()
# Use the last 5k training examples as a validation set
x_val, y_val = x_train[45000:50000], y_train[45000:50000]
# The `evaluate` function will be called after every round
def evaluate(
server_round: int, parameters: NDArrays, config: Dict[str, Scalar]
) -> Optional[Tuple[float, Dict[str, Scalar]]]:
model.set_weights(parameters) # Update model with the latest parameters
loss, accuracy = model.evaluate(x_val, y_val)
return loss, {"accuracy": accuracy}
return evaluate
# Load and compile model for server-side parameter evaluation
model = tf.keras.applications.EfficientNetB0(
input_shape=(32, 32, 3), weights=None, classes=10
)
model.compile("adam", "sparse_categorical_crossentropy", metrics=["accuracy"])
# Create strategy
strategy = fl.server.strategy.FedAvg(
# ... other FedAvg arguments
evaluate_fn=get_evaluate_fn(model),
)
# Start Flower server for four rounds of federated learning
fl.server.start_server(server_address="[::]:8080", strategy=strategy)
定制策略¶
The Strategy
abstraction provides a method called evaluate
that can directly be
used to evaluate the current global model parameters. The current server implementation
calls evaluate
after parameter aggregation and before federated evaluation (see next
paragraph).
联邦评估¶
实现联邦评估¶
Client-side evaluation happens in the Client.evaluate
method and can be configured
from the server side.
class CifarClient(fl.client.NumPyClient):
def __init__(self, model, x_train, y_train, x_test, y_test):
self.model = model
self.x_train, self.y_train = x_train, y_train
self.x_test, self.y_test = x_test, y_test
def get_parameters(self, config):
# ...
pass
def fit(self, parameters, config):
# ...
pass
def evaluate(self, parameters, config):
"""Evaluate parameters on the locally held test set."""
# Update local model with global parameters
self.model.set_weights(parameters)
# Get config values
steps: int = config["val_steps"]
# Evaluate global model parameters on the local test data and return results
loss, accuracy = self.model.evaluate(self.x_test, self.y_test, 32, steps=steps)
num_examples_test = len(self.x_test)
return loss, num_examples_test, {"accuracy": accuracy}
配置联邦评估¶
联邦评估可从服务器端进行配置。内置策略支持以下参数:
fraction_evaluate
: afloat
defining the fraction of clients that will be selected for evaluation. Iffraction_evaluate
is set to0.1
and100
clients are connected to the server, then10
will be randomly selected for evaluation. Iffraction_evaluate
is set to0.0
, federated evaluation will be disabled.min_evaluate_clients
: anint
: the minimum number of clients to be selected for evaluation. Iffraction_evaluate
is set to0.1
,min_evaluate_clients
is set to 20, and100
clients are connected to the server, then20
clients will be selected for evaluation.min_available_clients
: anint
that defines the minimum number of clients which need to be connected to the server before a round of federated evaluation can start. If fewer thanmin_available_clients
are connected to the server, the server will wait until more clients are connected before it continues to sample clients for evaluation.on_evaluate_config_fn
: a function that returns a configuration dictionary which will be sent to the selected clients. The function will be called during each round and provides a convenient way to customize client-side evaluation from the server side, for example, to configure the number of validation steps performed.
def evaluate_config(server_round: int):
"""Return evaluation configuration dict for each round.
Perform five local evaluation steps on each client (i.e., use five
batches) during rounds, one to three, then increase to ten local
evaluation steps.
"""
val_steps = 5 if server_round < 4 else 10
return {"val_steps": val_steps}
# Create strategy
strategy = fl.server.strategy.FedAvg(
# ... other FedAvg arguments
fraction_evaluate=0.2,
min_evaluate_clients=2,
min_available_clients=10,
on_evaluate_config_fn=evaluate_config,
)
# Start Flower server for four rounds of federated learning
fl.server.start_server(server_address="[::]:8080", strategy=strategy)
评估训练期间的本地模型更新¶
Model parameters can also be evaluated during training. Client.fit
can return
arbitrary evaluation results as a dictionary:
class CifarClient(fl.client.NumPyClient):
def __init__(self, model, x_train, y_train, x_test, y_test):
self.model = model
self.x_train, self.y_train = x_train, y_train
self.x_test, self.y_test = x_test, y_test
def get_parameters(self, config):
# ...
pass
def fit(self, parameters, config):
"""Train parameters on the locally held training set."""
# Update local model parameters
self.model.set_weights(parameters)
# Train the model using hyperparameters from config
history = self.model.fit(
self.x_train, self.y_train, batch_size=32, epochs=2, validation_split=0.1
)
# Return updated model parameters and validation results
parameters_prime = self.model.get_weights()
num_examples_train = len(self.x_train)
results = {
"loss": history.history["loss"][0],
"accuracy": history.history["accuracy"][0],
"val_loss": history.history["val_loss"][0],
"val_accuracy": history.history["val_accuracy"][0],
}
return parameters_prime, num_examples_train, results
def evaluate(self, parameters, config):
# ...
pass
完整代码示例¶
有关同时使用集中评估和联邦评估的完整代码示例,请参阅 *Advanced TensorFlow Example*(同样的方法也可应用于任何其他框架中): https://github.com/adap/flower/tree/main/examples/advanced-tensorflow