整合评估结果¶
Flower 服务器没有规定整合评估结果的方法,但用户可以完全自定义如何整合。
自定义整合评估结果¶
The same Strategy
-customization approach can be used to aggregate custom evaluation
results coming from individual clients. Clients can return custom metrics to the server
by returning a dictionary:
class CifarClient(fl.client.NumPyClient):
def get_parameters(self, config):
# ...
pass
def fit(self, parameters, config):
# ...
pass
def evaluate(self, parameters, config):
"""Evaluate parameters on the locally held test set."""
# Update local model with global parameters
self.model.set_weights(parameters)
# Evaluate global model parameters on the local test data
loss, accuracy = self.model.evaluate(self.x_test, self.y_test)
# Return results, including the custom accuracy metric
num_examples_test = len(self.x_test)
return loss, num_examples_test, {"accuracy": accuracy}
然后,服务器可以使用定制的策略来汇总这些字典中提供的指标:
class AggregateCustomMetricStrategy(fl.server.strategy.FedAvg):
def aggregate_evaluate(
self,
server_round: int,
results: List[Tuple[ClientProxy, EvaluateRes]],
failures: List[Union[Tuple[ClientProxy, FitRes], BaseException]],
) -> Tuple[Optional[float], Dict[str, Scalar]]:
"""Aggregate evaluation accuracy using weighted average."""
if not results:
return None, {}
# Call aggregate_evaluate from base class (FedAvg) to aggregate loss and metrics
aggregated_loss, aggregated_metrics = super().aggregate_evaluate(
server_round, results, failures
)
# Weigh accuracy of each client by number of examples used
accuracies = [r.metrics["accuracy"] * r.num_examples for _, r in results]
examples = [r.num_examples for _, r in results]
# Aggregate and print custom metric
aggregated_accuracy = sum(accuracies) / sum(examples)
print(
f"Round {server_round} accuracy aggregated from client results: {aggregated_accuracy}"
)
# Return aggregated loss and metrics (i.e., aggregated accuracy)
return aggregated_loss, {"accuracy": aggregated_accuracy}
# Create strategy and run server
strategy = AggregateCustomMetricStrategy(
# (same arguments as FedAvg here)
)
fl.server.start_server(strategy=strategy)