FedProx

class FedProx(*, fraction_fit: float = 1.0, fraction_evaluate: float = 1.0, min_fit_clients: int = 2, min_evaluate_clients: int = 2, min_available_clients: int = 2, evaluate_fn: Callable[[int, list[ndarray[Any, dtype[Any]]], dict[str, bool | bytes | float | int | str]], tuple[float, dict[str, bool | bytes | float | int | str]] | None] | None = None, on_fit_config_fn: Callable[[int], dict[str, bool | bytes | float | int | str]] | None = None, on_evaluate_config_fn: Callable[[int], dict[str, bool | bytes | float | int | str]] | None = None, accept_failures: bool = True, initial_parameters: Parameters | None = None, fit_metrics_aggregation_fn: Callable[[list[tuple[int, dict[str, bool | bytes | float | int | str]]]], dict[str, bool | bytes | float | int | str]] | None = None, evaluate_metrics_aggregation_fn: Callable[[list[tuple[int, dict[str, bool | bytes | float | int | str]]]], dict[str, bool | bytes | float | int | str]] | None = None, proximal_mu: float)[source]

Bases: FedAvg

联邦优化策略。

实施基于 https://arxiv.org/abs/1812.06127

The strategy in itself will not be different than FedAvg, the client needs to be adjusted. A proximal term needs to be added to the loss function during the training:

\[\begin{split}\\frac{\\mu}{2} || w - w^t ||^2\end{split}\]

Where $w^t$ are the global parameters and $w$ are the local weights the function will be optimized with.

例如,在 PyTorch 中,损失将从:

loss = criterion(net(inputs), labels)

致:

for local_weights, global_weights in zip(net.parameters(), global_params):
    proximal_term += (local_weights - global_weights).norm(2)
loss = criterion(net(inputs), labels) + (config["proximal_mu"] / 2) *
proximal_term

With global_params being a copy of the parameters before the training takes place.

global_params = copy.deepcopy(net).parameters()
参数:
  • fraction_fit (float, optional) -- Fraction of clients used during training. In case min_fit_clients is larger than fraction_fit * available_clients, min_fit_clients will still be sampled. Defaults to 1.0.

  • fraction_evaluate (float, optional) -- Fraction of clients used during validation. In case min_evaluate_clients is larger than fraction_evaluate * available_clients, min_evaluate_clients will still be sampled. Defaults to 1.0.

  • min_fit_clients (int, optional) -- Minimum number of clients used during training. Defaults to 2.

  • min_evaluate_clients (int, optional) -- Minimum number of clients used during validation. Defaults to 2.

  • min_available_clients (int, optional) -- Minimum number of total clients in the system. Defaults to 2.

  • evaluate_fn (Optional[Callable[[int, NDArrays, Dict[str, Scalar]], Optional[Tuple[float, Dict[str, Scalar]]]]]) -- Optional function used for validation. Defaults to None.

  • on_fit_config_fn (Callable[[int], Dict[str, Scalar]], optional) -- Function used to configure training. Defaults to None.

  • on_evaluate_config_fn (Callable[[int], Dict[str, Scalar]], optional) -- Function used to configure validation. Defaults to None.

  • accept_failures (bool, optional) -- Whether or not accept rounds containing failures. Defaults to True.

  • initial_parameters (Parameters, optional) -- Initial global model parameters.

  • fit_metrics_aggregation_fn (Optional[MetricsAggregationFn]) -- Metrics aggregation function, optional.

  • evaluate_metrics_aggregation_fn (Optional[MetricsAggregationFn]) -- Metrics aggregation function, optional.

  • proximal_mu (float) -- 优化中使用的近端项权重。0.0 使该策略等同于 FedAvg,系数越大,使用的正则化就越多(也就是说,在训练过程中,客户端参数需要更接近服务器参数)。

Methods

aggregate_evaluate(server_round, results, ...)

Aggregate evaluation losses using weighted average.

aggregate_fit(server_round, results, failures)

Aggregate fit results using weighted average.

configure_evaluate(server_round, parameters, ...)

配置下一轮评估。

configure_fit(server_round, parameters, ...)

配置下一轮训练。

evaluate(server_round, parameters)

Evaluate model parameters using an evaluation function.

initialize_parameters(client_manager)

Initialize global model parameters.

num_evaluation_clients(num_available_clients)

Use a fraction of available clients for evaluation.

num_fit_clients(num_available_clients)

Return the sample size and the required number of available clients.

aggregate_evaluate(server_round: int, results: list[tuple[ClientProxy, EvaluateRes]], failures: list[tuple[ClientProxy, EvaluateRes] | BaseException]) tuple[float | None, dict[str, bool | bytes | float | int | str]]

Aggregate evaluation losses using weighted average.

aggregate_fit(server_round: int, results: list[tuple[ClientProxy, FitRes]], failures: list[tuple[ClientProxy, FitRes] | BaseException]) tuple[Parameters | None, dict[str, bool | bytes | float | int | str]]

Aggregate fit results using weighted average.

configure_evaluate(server_round: int, parameters: Parameters, client_manager: ClientManager) list[tuple[ClientProxy, EvaluateIns]]

配置下一轮评估。

configure_fit(server_round: int, parameters: Parameters, client_manager: ClientManager) list[tuple[ClientProxy, FitIns]][source]

配置下一轮训练。

Sends the proximal factor mu to the clients

evaluate(server_round: int, parameters: Parameters) tuple[float, dict[str, bool | bytes | float | int | str]] | None

Evaluate model parameters using an evaluation function.

initialize_parameters(client_manager: ClientManager) Parameters | None

Initialize global model parameters.

num_evaluation_clients(num_available_clients: int) tuple[int, int]

Use a fraction of available clients for evaluation.

num_fit_clients(num_available_clients: int) tuple[int, int]

Return the sample size and the required number of available clients.