Flower 框架文档¶
Welcome to Flower's documentation. Flower is a friendly federated learning framework.
加入 Flower 社区¶
Flower 社区发展迅速--我们是一个由研究人员、工程师、学生、专业人士、学者和其他爱好者组成的友好团体。
在 Slack 上加入我们
Flower 框架¶
The user guide is targeted at researchers and developers who want to use Flower to bring existing machine learning workloads into a federated setting. One of Flower's design goals was to make this simple. Read on to learn more!
教程¶
以学习为导向的联邦学习教程系列,最好的起点。
QUICKSTART TUTORIALS: PyTorch | TensorFlow | MLX | 🤗 Transformers | JAX | Pandas | fastai | PyTorch Lightning | scikit-learn | XGBoost | Android | iOS
操作指南¶
以问题为导向的 "如何做 "指南逐步展示如何实现特定目标。
操作指南
- 安装Flower
- Configure Clients
- Design stateful ClientApps
- 使用策略
- 实施策略
- 整合评估结果
- Save and Load Model Checkpoints
- 运行模拟
- Run Flower with the Deployment Engine
- Enable TLS connections
- Authenticate SuperNodes
- Configure logging
- Use Built-in Mods
- Use Differential Privacy
- Implement FedBN
- Run Flower on Azure
- Use CLI JSON output
- Run Flower using Docker
- 升级至 Flower 1.0
- Upgrade to Flower 1.13
说明¶
以理解为导向的概念指南解释并讨论了Flower和协作式人工智能背后的关键主题和基本思想。
参考资料¶
以信息为导向的 API 参考资料和其他参考资料。
Flower main package. |
贡献者文档¶
Flower 社区欢迎您的贡献。以下文档旨在为您提供帮助。
贡献者教程
投稿指南
贡献者解释