Code source de flwr.server.strategy.fedprox

# Copyright 2023 Flower Labs GmbH. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Federated Optimization (FedProx) [Li et al., 2018] strategy.

Paper: arxiv.org/abs/1812.06127
"""


from typing import Callable, Optional

from flwr.common import FitIns, MetricsAggregationFn, NDArrays, Parameters, Scalar
from flwr.server.client_manager import ClientManager
from flwr.server.client_proxy import ClientProxy

from .fedavg import FedAvg


# pylint: disable=line-too-long
[docs] class FedProx(FedAvg): r"""Federated Optimization strategy. Implementation based on https://arxiv.org/abs/1812.06127 The strategy in itself will not be different than FedAvg, the client needs to be adjusted. A proximal term needs to be added to the loss function during the training: .. math:: \\frac{\\mu}{2} || w - w^t ||^2 Where $w^t$ are the global parameters and $w$ are the local weights the function will be optimized with. In PyTorch, for example, the loss would go from: .. code:: python loss = criterion(net(inputs), labels) To: .. code:: python for local_weights, global_weights in zip(net.parameters(), global_params): proximal_term += (local_weights - global_weights).norm(2) loss = criterion(net(inputs), labels) + (config["proximal_mu"] / 2) * proximal_term With `global_params` being a copy of the parameters before the training takes place. .. code:: python global_params = copy.deepcopy(net).parameters() Parameters ---------- fraction_fit : float, optional Fraction of clients used during training. In case `min_fit_clients` is larger than `fraction_fit * available_clients`, `min_fit_clients` will still be sampled. Defaults to 1.0. fraction_evaluate : float, optional Fraction of clients used during validation. In case `min_evaluate_clients` is larger than `fraction_evaluate * available_clients`, `min_evaluate_clients` will still be sampled. Defaults to 1.0. min_fit_clients : int, optional Minimum number of clients used during training. Defaults to 2. min_evaluate_clients : int, optional Minimum number of clients used during validation. Defaults to 2. min_available_clients : int, optional Minimum number of total clients in the system. Defaults to 2. evaluate_fn : Optional[Callable[[int, NDArrays, Dict[str, Scalar]], Optional[Tuple[float, Dict[str, Scalar]]]]] Optional function used for validation. Defaults to None. on_fit_config_fn : Callable[[int], Dict[str, Scalar]], optional Function used to configure training. Defaults to None. on_evaluate_config_fn : Callable[[int], Dict[str, Scalar]], optional Function used to configure validation. Defaults to None. accept_failures : bool, optional Whether or not accept rounds containing failures. Defaults to True. initial_parameters : Parameters, optional Initial global model parameters. fit_metrics_aggregation_fn : Optional[MetricsAggregationFn] Metrics aggregation function, optional. evaluate_metrics_aggregation_fn : Optional[MetricsAggregationFn] Metrics aggregation function, optional. proximal_mu : float The weight of the proximal term used in the optimization. 0.0 makes this strategy equivalent to FedAvg, and the higher the coefficient, the more regularization will be used (that is, the client parameters will need to be closer to the server parameters during training). """ # pylint: disable=too-many-arguments,too-many-instance-attributes def __init__( self, *, fraction_fit: float = 1.0, fraction_evaluate: float = 1.0, min_fit_clients: int = 2, min_evaluate_clients: int = 2, min_available_clients: int = 2, evaluate_fn: Optional[ Callable[ [int, NDArrays, dict[str, Scalar]], Optional[tuple[float, dict[str, Scalar]]], ] ] = None, on_fit_config_fn: Optional[Callable[[int], dict[str, Scalar]]] = None, on_evaluate_config_fn: Optional[Callable[[int], dict[str, Scalar]]] = None, accept_failures: bool = True, initial_parameters: Optional[Parameters] = None, fit_metrics_aggregation_fn: Optional[MetricsAggregationFn] = None, evaluate_metrics_aggregation_fn: Optional[MetricsAggregationFn] = None, proximal_mu: float, ) -> None: super().__init__( fraction_fit=fraction_fit, fraction_evaluate=fraction_evaluate, min_fit_clients=min_fit_clients, min_evaluate_clients=min_evaluate_clients, min_available_clients=min_available_clients, evaluate_fn=evaluate_fn, on_fit_config_fn=on_fit_config_fn, on_evaluate_config_fn=on_evaluate_config_fn, accept_failures=accept_failures, initial_parameters=initial_parameters, fit_metrics_aggregation_fn=fit_metrics_aggregation_fn, evaluate_metrics_aggregation_fn=evaluate_metrics_aggregation_fn, ) self.proximal_mu = proximal_mu def __repr__(self) -> str: """Compute a string representation of the strategy.""" rep = f"FedProx(accept_failures={self.accept_failures})" return rep
[docs] def configure_fit( self, server_round: int, parameters: Parameters, client_manager: ClientManager ) -> list[tuple[ClientProxy, FitIns]]: """Configure the next round of training. Sends the proximal factor mu to the clients """ # Get the standard client/config pairs from the FedAvg super-class client_config_pairs = super().configure_fit( server_round, parameters, client_manager ) # Return client/config pairs with the proximal factor mu added return [ ( client, FitIns( fit_ins.parameters, {**fit_ins.config, "proximal_mu": self.proximal_mu}, ), ) for client, fit_ins in client_config_pairs ]